21 — Equation of State [*Revision* : 1.1]

 $\bullet\,$ Ideal gas

- So far, stellar material has been treated as ideal gas.
- Ideal **equation-of-state** (EOS) relates gas pressure $P_{\rm g}$, temperature T & number of particles N:

 $P_{\rm g}V = NkT$

where V is volume (pressure is written as $P_{\rm g}$ instead of P to distinguish from radiation pressure). Slighly more useful form:

$$P_{\rm g} = nkT$$

where n = N/V is number of particles per unit volume (number density)

- Mean molecular weight
 - To relate n to mass density ρ :

$$n = \frac{\rho}{\bar{m}}$$

where \bar{m} is average mass per particle. Introduce **mean molecular weight**:

$$\mu = \frac{\bar{m}}{m_{\rm H}}$$

(average mass per particle, in units of hydrogen atom mass $m_{\rm H}$). **NOTE:** terminology change here; previously, μ has been used to indicate the mean particle mass in units of grams etc.; now, it is the mean particle mass in units of $m_{\rm H}$

- Combine above expressions give pressure-density-temperature EOS:

$$P_{\rm g} = \frac{\rho kT}{\mu m_{\rm H}}$$

(most common form)

- Looks simple; but μ in general depends on ionization state of gas
- Evaluating μ
 - To evaluate μ , must determine average particle mass \bar{m} by adding over all particles
 - Let n_j be number density of atoms of type j, m_j be corresponding mass, and n_e be number density of electrons. Then

$$\bar{m} = \frac{\sum_{j} n_{j} m_{j} + n_{\mathrm{e}} m_{\mathrm{e}}}{\sum_{j} n_{j} + n_{\mathrm{e}}} \approx \frac{\sum_{j} n_{j} m_{j}}{\sum_{j} n_{j} + n_{\mathrm{e}}}$$

(electron masses are negligible)

- But m_j determined from **mass number** A_j (number of protons + neutrons)

$$m_j \approx A_j m_{\rm H}$$

(binding mass is negligible)

- So:

$$\mu = \frac{\bar{m}}{m_{\rm H}} = \frac{\sum_j n_j A_j}{\sum_j n_j + n_{\rm e}}$$

– For neutral gas $(n_e \rightarrow 0)$:

$$\mu = \frac{\sum_j n_j A_j}{\sum_j n_j}$$

– For fully ionized gas $(n_e \rightarrow \sum_j n_j Z_j)$, where Z_j is **atomic number**):

$$\mu = \frac{\sum_j n_j A_j}{\sum_j n_j (1 + Z_j)}$$

- General cases: must determine $n_{\rm e}$ from solution of **Saha equation**!
- Mass fractions
 - To work out number densities n_j , need to know mass fractions
 - Mass fraction X_j is the fraction by mass of gas that is made up of element j. E.g., in Sun helium has a mass fraction ~ 0.28, meaning 1 g of solar material contains 0.28 g of helium
 - Always true that

$$\sum_{j} X_{j} = 1$$

- Conventions:
 - * X_j for hydrogen written as X
 - * X_j for helium written as Y
 - * Combined X_j for all other elements written as Z (**metallicity**); do not confuse with $Z_j!$
 - * X + Y + Z = 1
- Number densities from mass fractions:

$$n_j = \frac{\rho}{m_{\rm H}} \frac{X_j}{A_j}$$

- So, for neutral gas:

$$\mu = \frac{\sum_{j} X_{j}}{\sum_{j} \frac{X_{j}}{A_{j}}} = \left[\sum_{j} \frac{X_{j}}{A_{j}}\right]^{-1} = \left[X + \frac{Y}{4} + \left\langle\frac{1}{A_{j}}\right\rangle Z\right]^{-1}$$

where $\langle 1/A_j \rangle$ is an average over metals (~ 1/15.5 for solar composition)

– For fully ionized gas:

$$\mu = \left[\sum_{j} \frac{X_j}{A_j} (1+Z_j)\right]^{-1} \approx \left[2X + \frac{3Y}{4} + \frac{Z}{2}\right]^{-1}$$

(used approx: for each metal, assume $(1 + Z_j)/A_j \approx 1/2$)

- Solar abundances
 - Sun has X = 0.7, Y = 0.28, Z = 0.02
 - For neutral gas, $\mu = 1.30$
 - For ionized gas, $\mu = 0.62$