13 - The Gray \& Eddington Approximations [Revision : 1.3]

- Gray atmospheres
- Plane-parallel RTE still difficult to solve because vertical optical depth is wavelength dependent
- Useful simplification of gray atmosphere: assume opacity is independent of wavelength: $\kappa_{\lambda}=\bar{\kappa}$. Then,

$$
\tau_{\mathrm{v}}(z)=\int_{z}^{0} \bar{\kappa}(z) \rho(z) \mathrm{d} z
$$

and

$$
\cos \theta \frac{\mathrm{d} I}{\mathrm{~d} \tau_{\mathrm{v}}}=I-S
$$

where

$$
I=\int_{0}^{\infty} I_{\lambda} \mathrm{d} \lambda, \quad S=\int_{0}^{\infty} S_{\lambda} \mathrm{d} \lambda
$$

- Moments of the radiation field
- Grey, plane-parallel RTE still depends on direction μ
- To further simplify, integrate RTE over all solid angles:

$$
\frac{\mathrm{d}}{\mathrm{~d} \tau_{\mathrm{v}}} \int I \mu \mathrm{~d} \Omega=\int I \mathrm{~d} \Omega-S \int \mathrm{~d} \Omega
$$

(S comes out from under integral sign, because it doesn't depend on angle)

- Recalling from notes 9 , mean intensity:

$$
\langle I\rangle=\frac{1}{4 \pi} \int I \mathrm{~d} \Omega=\frac{1}{2} \int_{-1}^{1} I \mathrm{~d} \mu,
$$

and flux:

$$
F=\int I \mu \mathrm{~d} \Omega=2 \pi \int_{-1}^{1} I \mu \mathrm{~d} \mu
$$

- So,

$$
\frac{\mathrm{d} F}{\mathrm{~d} \tau_{\mathrm{v}}}=4 \pi(\langle I\rangle-S)
$$

- Another equation is obtained by multiplying RTE by μ, and integrating over all solid angles:

$$
\frac{\mathrm{d}}{\mathrm{~d} \tau_{\mathrm{v}}} \int I \mu^{2} \mathrm{~d} \Omega=\int I \mu \mathrm{~d} \Omega-S \int \mu \mathrm{~d} \Omega
$$

- Recalling from notes 9 , radiation pressure:

$$
P_{\mathrm{rad}}=\frac{1}{c} \int I \mu^{2} \mathrm{~d} \Omega=\frac{2 \pi}{c} \int_{-1}^{1} I \mu^{2} \mathrm{~d} \mu
$$

and so:

$$
\frac{\mathrm{d} P_{\mathrm{rad}}}{\mathrm{~d} \tau_{\mathrm{v}}}=\frac{F}{c}
$$

- Equations for $\mathrm{d} F / \mathrm{d} \tau_{\mathrm{v}}$ and $\mathrm{d} P_{\mathrm{rad}} / \mathrm{d} \tau_{\mathrm{v}}$ are moment equations; $n^{\text {th }}$ moment of radiation field defined by

$$
M_{n}=\int I \mu^{n} \mathrm{~d} \Omega
$$

- Radiative equilibrium
- In radiative equilibrium, no net energy added or subtracted as radiation travels up through atmosphere - amount absorbed $=$ amount emitted:

$$
\kappa\langle I\rangle=\kappa S
$$

- From first moment equation, this means that

$$
\frac{\mathrm{d} F}{\mathrm{~d} \tau}=4 \pi(\langle I\rangle-S)=0
$$

i.e., flux F is constant throughout atmosphere

- From second moment equation, with F constant:

$$
P_{\mathrm{rad}}=\frac{1}{c} F \tau_{\mathrm{v}}+C
$$

where C is constant of integration

- However, how do we find out $P_{\text {rad }}$? Could take next higher-order moment of RTE, but that will just introduce an additional term M_{3} - and so on, ad infinitum
- In fact, we need closure relation: independent piece of information that will relate $P_{\text {rad }}$ to $\langle I\rangle$
- Eddington approximation
- To find closure relation, make simplifying Eddington approximation about radiation field: specific intensity is constant over upward and downward hemispheres:

$$
I(\mu)= \begin{cases}I_{\text {out }} & \mu>0 \\ I_{\text {in }} & \mu<0\end{cases}
$$

- Substitute into definitions above for various moments gives

$$
\begin{aligned}
\langle I\rangle & =\frac{1}{2}\left(I_{\mathrm{out}}+I_{\mathrm{in}}\right) \\
F & =\pi\left(I_{\mathrm{out}}-I_{\mathrm{in}}\right) \\
P_{\mathrm{rad}} & =\frac{2 \pi}{3 c}\left(I_{\mathrm{out}}+I_{\mathrm{in}}\right)=\frac{4 \pi}{3 c}\langle I\rangle
\end{aligned}
$$

- Last equation gives the desired closure relation - an independent piece of information relating radiation pressure to mean intensity
- Combining with earlier equation for radiation pressure:

$$
\frac{4 \pi}{3 c}\langle I\rangle=\frac{1}{c} F \tau_{\mathrm{v}}+C
$$

- Eliminate C by requiring that $I_{\text {in }}=0$ at $\tau_{\mathrm{v}}=0$:

$$
\frac{4 \pi}{3}\langle I\rangle=F\left(\tau_{\mathrm{v}}+\frac{2}{3}\right)
$$

- Final step: since F is constant in atmosphere, and at outer layers $F=\sigma T_{\text {eff }}^{4}$ (definition of effective temperature!),

$$
\langle I\rangle=\frac{3 \sigma}{4 \pi} T_{\mathrm{eff}}^{4}\left(\tau_{\mathrm{v}}+\frac{2}{3}\right)
$$

This then gives source function throughout atmosphere, and hence full radiation field via formal solution

- If atmosphere is in local thermodynamic equilibrium, $S=B=\sigma T^{4} / \pi$, and so we have temperature structure:

$$
T^{4}=\frac{3}{4} T_{\mathrm{eff}}^{4}\left(\tau_{\mathrm{v}}+\frac{2}{3}\right)
$$

