12 - Atmospheric Transfer [Revision : 1.3]

- Plane-parallel atmospheres
 - Recall radiative transfer equation:

$$\frac{\mathrm{d}I_{\lambda}}{\mathrm{d}\tau_{\lambda}} = I_{\lambda} - S_{\lambda}$$

- In this form, difficult to apply to a stellar atmosphere, because rays in different directions sample different ρ & κ_{λ} optical depth scale isn't unique
- However, for most stars (esp. main sequence), typical thickness of atmospheric layers is much smaller than stellar radius
- Locally, atmosphere appears plane-parallel, with density, temperature, etc depending only on the vertical height z
- Convention: z = 0 is top of atmosphere, z increases outwards and decreases inwards. (So, inside atmosphere, z < 0)
- Define vertical optical depth:

$$\mathrm{d}\tau_{\lambda,\mathrm{v}} = -\kappa_{\lambda}\rho\mathrm{d}z$$

Integrating:

$$\tau_{\lambda,\mathbf{v}}(z) = \int_{z}^{0} \kappa_{\lambda} \rho \mathrm{d}z'$$

- Optical depth along non-vertical ray given by

$$\tau_{\lambda} = \tau_{\lambda, v} \sec \theta$$

where θ is angle to vertical

- So, RTE becomes

$$\cos\theta \frac{\mathrm{d}I_{\lambda}}{\mathrm{d}\tau_{\lambda,\mathrm{v}}} = I_{\lambda} - S_{\lambda},$$

or

$$\mu \frac{\mathrm{d}I_{\lambda}}{\mathrm{d}\tau_{\lambda,\mathrm{v}}} = I_{\lambda} - S_{\lambda},$$

where $\mu \equiv \cos \theta$

- Because plane-parallel atmosphere has no preferred horizontal direction, I_{λ} doesn't depend on azimuthal angle ϕ : axisymmetry
- Formal solution
 - As with slab, when source function is known we can integrate RTE to find formal solution
 - However, because atmosphere is effectively semi-infinite, boundary conditions are different in this case:
 - * At upper boundary $\tau_{\lambda,v} = 0$, no radiation from outside:

$$I_{\lambda} = 0$$
 for $\mu < 0$

* At lower 'boundary' $\tau_{\lambda,v} \to \infty$, radiation field remains bounded:

$$I_{\lambda} e^{-\tau_{\lambda,v}}$$
 finite for $\mu > 0$

- With these boundary conditions, formal solution is

$$I_{\lambda}(\tau_{\lambda,v},\mu>0) = \int_{\tau_{\lambda,v}}^{\infty} S_{\lambda} e^{(\tau_{\lambda,v}-t)/\mu} \frac{dt}{\mu},$$
$$I_{\lambda}(\tau_{\lambda,v},\mu<0) = \int_{\tau_{\lambda,v}}^{0} S_{\lambda} e^{(\tau_{\lambda,v}-t)/\mu} \frac{dt}{\mu}$$

- As specific case, the **emergent specific intensity** is given by

$$I_{\lambda}(\tau_{\lambda,\mathbf{v}}=0,\mu>0) = \int_0^\infty S_{\lambda} \mathrm{e}^{-t/\mu} \frac{\mathrm{d}t}{\mu}$$

which is a weighted sum of the source function over all depths

- Eddington-Barbier relation
 - Formal solution presumes we know source function
 - Approximation: near top of atmosphere, expand source function using Taylor series:

 $S_{\lambda}(\tau_{\lambda,v}) \approx S_{\lambda}(0) + S'_{\lambda}(0)\tau_{\lambda,v} = a + b\tau_{\lambda,v}$

- Substitute into formal solution, to find emergent intensity:

$$I_{\lambda}(\tau_{\lambda,v}=0,\mu>0)=a+b\mu$$

– But this is just source function at vertical optical depth μ :

$$I_{\lambda}(\tau_{\lambda,v}=0,\mu>0)=S_{\lambda}(\tau_{\lambda,v}=\mu)$$

- Recall that optical depth along ray in direction μ is:

$$\tau_{\lambda} = \tau_{\lambda, v} \sec \theta = \frac{\tau_{\lambda, v}}{\mu}$$

Hence:

$$I_{\lambda}(\tau_{\lambda,v} = 0, \mu > 0) = S_{\lambda}(\tau_{\lambda} = 1)$$

- This is the **Eddington-Barbier relation** (EBR): for a source function $S_{\lambda} = a + b\tau_{\lambda,v}$, the emergent specific intensity along a given ray is just equal to the source function at optical depth unity along that ray
- Not entirely accurate, but gives important **insight** into limb darkening and spectral line formation
- Limb darkening
 - Generally the case that S_{λ} increases with increasing τ_{λ}
 - For instance, with blackbody, $S_{\lambda} = B_{\lambda}$, and B_{λ} gets larger in the deeper, hotter layers of atmosphere
 - Applying EBR, emergent specific intensity will be larger along vertical rays ($\mu \approx 1$) than horizontal rays ($\mu \approx 0$)
 - Phenomenon of limb darkening; easily seen in photographs of Sun, and also shows up in eclipsing binaries
- Spectral lines
 - A spectral line is formed when κ_{λ} becomes larger over a narrow range of wavelengths
 - In this narrow range, $\tau_{\lambda} = 1$ level is much higher in atmosphere, where source function is lower
 - Therefore, by EBR, emergent intensity is lower \longrightarrow absorption line