10 — Radiation & Matter [Revision : 1.3]

- Specific intensity is constant along ray through empty space
- However, matter **interacts** with radiation to change I_{λ}
- Three principal processes:
 - Absorption: photon is destroyed, energy goes into excitation/kinetic energy of matter
 - Emission: photon is created, energy comes from excitation/kinetic energy of matter
 - **Scattering**: photon's direction, and possibly wavelength, is changed by 'collision' with matter
- Cross section
 - Consider photon beam of cross-section dA, impingent on black (completely-absorbing) object with cross-section σ . Fraction of photons absorbed is σ/dA
 - Probability that any individual photon absorbed is

$$P = \frac{\sigma}{\mathrm{d}A}$$

- Apply similar reasoning to atomic-scale absorbers & scatterers: probability that individual photon interacts (absorb or scatter) is same, but σ is now the **interaction cross section** (units of area)
- Mean free path
 - Consider photons travelling through slab with face area dA and (infinitessimal) thickness ds, containing N particles
 - Probability that individual photon interacts is

$$P = N \frac{\sigma}{\mathrm{d}A} = n\sigma \mathrm{d}s$$

where $n \equiv N/(dAds)$ is number of particles per unit volume

- Important result: probability of interaction per unit length is $P/ds = n\sigma$.
- If beam contains N_p photons when it enters the slab, then on exiting PN_p will have interacted; number remaining in beam is

$$N_{\rm p}(s+{\rm d}s) = N_{\rm p}(s) - PN_{\rm p}(s) = N_{\rm p}(s)(1-P)$$

where s is location where photons enter slab

- Rearranging:

$$N_{\rm p}(s+{\rm d}s) - N_{\rm p}(s) = -N_{\rm p}(s)P = -N_{\rm p}(s)n\sigma{\rm d}s$$

– In limit $ds \rightarrow 0$:

$$\frac{N_{\rm p}(s+{\rm d}s)-N_{\rm p}(s)}{{\rm d}s} = \frac{{\rm d}N_{\rm p}}{{\rm d}s} = -N_{\rm p}n\sigma$$

(photon transport equation)

- Solving:

$$N_{\rm p}(s) = N_{\rm p,0} \mathrm{e}^{-n\sigma s}$$

where $N_{\rm p,0}$ is constant of integration

- Corrollary: probability that photon travels macroscopic distance s without interaction:

$$Q(s) = \frac{N_{\rm p}(s)}{N_{\rm p,0}} = e^{-n\sigma s}$$

- Also, probability that an interaction takes place in the interval (s, s + ds) is probability photon travels distance *s* without interaction (see above), times probability it interacts in subsequent ds:

$$P(s)ds = Q(s)n\sigma ds = n\sigma e^{-n\sigma s}ds$$

– Most probable distance before interaction:

$$\langle s \rangle = \int_0^\infty n\sigma s \mathrm{e}^{-n\sigma s} \mathrm{d}s = \frac{1}{n\sigma};$$

This is the **mean free path** of photons

- Opacity
 - For medium of density ρ , number density n is

$$n = \frac{\rho}{\mu}$$

where μ is mean molecular weight

- For absorption processes, solution of transport equation above can also be written

$$N_{\rm p}(s) = N_{\rm p,0} \mathrm{e}^{-\kappa\rho s}$$

where κ is the **opacity**.

- Same for scattering processes, but different symbol typically used for opacity (often $\tilde{\sigma}$, which is confusing!)
- Can also write

$$N_{\rm p}(s) = N_{\rm p,0} \mathrm{e}^{-\tau(s)}$$

where $\tau \equiv \kappa \rho s$ is **optical thickness**.

- Optically thin: $\tau \ll 1$:

$$N_{\rm p}(s) \approx N_{\rm p,0}(1-\tau)$$

(varies linearly with τ)

- Optically thick: $\tau \gg 1$
- Optical depth $\tau = 1$ equivalent to one mean free path:

$$\kappa\rho s = 1 \longleftrightarrow s = \frac{1}{\kappa\rho} = \langle s \rangle$$

– So far, analysis for uniform (constant ρ , κ) slab. For non-uniform medium, define

$$\mathrm{d}\tau = \kappa(s)\rho(s)\mathrm{d}\tau$$

so that

$$\tau = \int \kappa(s)\rho(s)\mathrm{d}s$$

Same formulae then apply, e.g.

$$N_{\rm p}(s) = N_{\rm p,0} \mathrm{e}^{-\tau(s)}$$

- In language of specific intensity, above equations become

$$I(s) = I_0 \mathrm{e}^{-\tau(s)}$$

– Since κ generally depends on wavelength, more-general form is

$$I_{\lambda}(s) = I_{\lambda,0} \mathrm{e}^{-\tau_{\lambda}(s)}$$

where

$$\tau = \int \kappa(s)\rho(s)\mathrm{d}s$$

and κ_{λ} is monochromatic opacity

• Emissivity

4

- Consider radiation travelling through same slab with (infinitessimal) thickness ds
- Change in specific intensity traveling through slab is

$$\mathrm{d}I_{\lambda} = j_{\lambda}\mathrm{d}s$$

where j_{λ} is **emissivity**: amount of radiation emitted per second, per unit wavelength interval, per unit volume, per unit solid angle, in certain direction.