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ABSTRACT
Building upon our previous magnetohydrodynamics (MHD) simulation study of magnetic

channelling in radiatively driven stellar winds, we examine here the additional dynamical

effects of stellar rotation in the (still) 2D axisymmetric case of an aligned dipole surface field.

In addition to the magnetic confinement parameter η∗ introduced in Paper I, we characterize the

stellar rotation in terms of a parameter W ≡ V rot/Vorb (the ratio of the equatorial surface rotation

speed to orbital speed), examining specifically models with moderately strong rotation W =
0.25 and 0.5, and comparing these to analogous non-rotating cases. Defining the associated

Alfvén radius RA ≈ η
1/4
∗ R∗ and Kepler corotation radius RK ≈ W−2/3 R∗ , we find rotation

effects are weak for models with RA < RK, but can be substantial and even dominant for

models with RA � RK. In particular, by extending our simulations to magnetic confinement

parameters (up to η∗ = 1000) that are well above those (η∗ = 10) considered in Paper I, we

are able to study cases with RA � RK; we find that these do indeed show clear formation

of the rigid body disc predicted in previous analytic models, with however a rather complex,

dynamic behaviour characterized by both episodes of downward infall and outward breakout

that limit the build-up of disc mass. Overall, the results provide an intriguing glimpse into the

complex interplay between rotation and magnetic confinement, and form the basis for a full

MHD description of the rigid body discs expected in strongly magnetic Bp stars like σ Ori E.

Key words: MHD – stars: early-type – stars: magnetic fields – stars: mass-loss – stars: rotation

– stars: winds, outflows.

1 I N T RO D U C T I O N

In Paper I of this series (ud-Doula & Owocki 2002), we examined

the effect of a large-scale dipole magnetic field on the radiatively

driven wind from a hot, massive star. The radiative envelopes of such

hot stars means they lack the strong convection zone that drives the

dynamo generation of magnetic activity cycles in the Sun and other

relatively cool stars. None the less, in recent years spectropolarimet-

ric observations have led to positive detections of large-scale fields

in several such hot stars, often well fit by a dipole tilted relative to

the star’s rotation axis (e.g. Donati et al. 2002). In some cases the

associated period of rotational modulation is quite long, weeks or

even years (e.g. in θ1 Ori C, HD191612; Donati et al. 2006), im-

plying that the direct dynamical effect of rotation on the magnetic

channelling of the wind is likely to be limited. As a first approxi-

mation, the magnetohydrodynamics (MHD) simulation models of

Paper I thus ignored the effects of rotation.

�E-mail: uddoula@morrisville.edu
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More generally, however, massive stars tend to have quite rapid

rotation, as evidenced both by the substantial broadening in photo-

spheric spectral lines (Conti & Ebbets 1977; Fukuda 1982), which

indicate projected rotation speeds of hundreds of km s−1, and by

the relatively short period of observed modulations for some stars,

e.g. the magnetic Bp star σ Ori E, for which the inferred rotation

period is about 1.2 d (Walborn 1981). Both lines of evidence sug-

gest that hot-star rotation rates are commonly a substantial fraction

of the ‘critical’ rate at which the equatorial surface would be in

Keplerian orbit. Since this implies centrifugal forces that are com-

parable to the inward pull of gravity, it is clear that such levels of

rotation could significantly influence the magnetic channelling of a

stellar wind.

Previous studies have focused in particular on the potential role of

magnetic fields in spinning up the wind outflow and channelling it

into an equatorial disc that might be centrifugally supported against

gravity. Cassinelli et al. (2002) argued that such magnetic spin-

up could effectively eject material into a ‘magnetically torqued

disc’ (MTD), in which individual fluid elements would be in local

Keplerian orbit, and specifically proposed this as a model for

the Keplerian ‘decretion discs’ inferred for Be stars. For the
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chemically peculiar Bp stars that have been directly observed to

have very strong magnetic fields (�104 G), Townsend & Owocki

(2005, hereafter TO-05) developed a somewhat different ‘rigidly

rotating magnetosphere’ (RRM) paradigm in which the field again

spins up and channels wind material into a disc, but now is also suffi-

ciently strong to hold it in rigid body rotation. This RRM model has

proven particularly successful in explaining the rotationally modu-

lated Balmer emission observed from σ Ori E (Townsend, Owocki

& Groote 2005).

To test these semi-analytic paradigms, we have made some ini-

tial efforts to extend the numerical MHD simulations of Paper I to

include rotation in the simple 2D axisymmetric case of a rotation-

aligned dipole. The results indicate that a large-scale field strong

enough to torque wind material to Keplerian orbital speed tends

also to propel material away from the star, rather than into the kind

of stationary, Keplerian disc envisioned in the MTD model (Owocki,

Townsend & ud-Doula 2006, 2007; ud-Doula, Townsend & Owocki

2006). However, for cases with strong enough magnetic confinement

to hold material down against such outward escape, there can indeed

form a limited rigid body disc quite similar to that predicted by the

RRM model (Owocki & ud-Doula 2003; Owocki 2006). But even

in such cases, there is irregular breakout of material from the outer

disc, leading to a sudden magnetic reconnection heating that could

explain the hard X-ray flares seen from σ Ori E (ud-Doula et al.

2006).

The present paper further extends these previous MHD simula-

tions with a more extensive 2D parameter study covering models

over a range in both rotation rate and degree of magnetic confine-

ment. A particular focus is to develop a clearer physical picture of

the complex competition between wind-fed build-up of material in

a disc versus losses by both outward ejection and infall back to the

star.1 Moreover, the broad parameter study here allows us to examine

in detail how these processes are affected by various combinations

of rotation rate and magnetic field strength. To lay the basis for the

results presented in Section 4, Section 2 first reviews the general nu-

merical MHD approach and Section 3 defines the overall parameter

domain. Section 5 concludes with a summary and outline for future

work.

2 N U M E R I C A L M E T H O D

2.1 Vector form of basic MHD equations

As in Paper I, our general approach is to use the ZEUS-3D (Stone &

Norman 1992) numerical MHD code to evolve a consistent dynam-

ical solution for a line-driven stellar wind from a star with a dipole

surface field. Our implementation here again adopts spherical polar

coordinates with radius r, colatitude θ and azimuth φ, but now in a

‘2.5D’ formulation that allows for non-zero azimuthal components

of both the magnetic field Bφ and velocity vφ , while still assuming

all quantities are constant in the azimuthal coordinate angle φ. To

maintain this 2.5D axisymmetry, we assume the stellar magnetic

field to be a pure dipole with polar axis aligned with the rotation

axis of the star.

In vector form, the standard formulation of MHD includes equa-

tions for mass continuity,

1 To allow focus on these issues of disc build-up, we defer here any discussion

of wind angular momentum loss and the resulting stellar spin-down to a

future, follow-up paper.

∂ρ

∂t
+ v · ∇ρ + ρ∇ · v = 0 (1)

and momentum balance,

∂v
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+ v · ∇v = −∇ p

ρ
+ 1

4πρ
(∇ × B) × B − G M r̂

r 2
+ glines,

(2)

where the notation follows common conventions, and is defined

in detail in Section 2 of Paper I. [Note that equation (2) here

corrects some minor errors in the corresponding equation (2) of

Paper I.]

2.2 Rotation terms in the advective acceleration

The inclusion of a finite rotation in the present work leads to ad-

ditional nonzero terms proportional to the azimuthal velocity vφ

within the three vector components of the advective acceleration,
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r
, (3)
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r
, (4)

[v · ∇v]φ = vr
∂vφ

∂r
+ vθ

r

∂vφ

∂θ
+ cot θ

vφvθ

r
+ vφvr

r
. (5)

The terms here without derivatives represent the inertial forces aris-

ing from the curvature of the coordinate system, namely centrifugal

and coriolis forces, which, e.g. in the absence of external torques,

enforce conservation of angular momentum within the rotating flow

described in spherical coordinates.

Of course, in magnetic models the Lorentz force, represented by

the second term on the right-hand side of equation (2), can signif-

icantly channel the flow, competing against these inertial terms. In

rotating models, this Lorentz force can now also impart a significant

torque to spin up the outflow; moreover it now includes additional

terms proportional to the non-zero Bφ , which themselves represent

a component for outward angular momentum transport.

This competition between the magnetic Lorentz force and the

inertia terms associated with rotation represents a central focus of

the present study. In some ways, it parallels the central competition

examined in Paper I, namely between magnetic forces and the inertia

associated with the radial outflow of the wind.

2.3 Radial driving of wind outflow

This radial outflow arises from the strong radial driving of the line

force, glines. As in Paper I, we model this here in terms of the standard

Castor, Abbott & Klein (1975, hereafter CAK) formalism, corrected

for the finite cone angle of the star, using a spherical expansion

approximation for the local flow gradients (Pauldrach et al. 1985;

Friend & Abbott 1986) and ignoring non-radial line force com-

ponents that can arise in a non-spherical outflow. Although such

non-radial terms are typically only a few per cent of the radial force,

in non-magnetic models of rotating winds, they act without much

competition in the lateral force balance, and so can have surpris-

ingly strong effects on the wind channelling and rotation (Owocki,

Cranmer & Gayley 1996; Gayley & Owocki 2000). But in magnetic

models with an already strong component of non-radial force, such

terms are not very significant, and since their full inclusion substan-

tially complicates both the numerical computation and the analysis
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of simulation results, we have elected to defer further consideration

of such non-radial line force terms to future studies.

By limiting our study to moderately fast rotation, half or less of

the critical rate, we are also able to neglect the effects of stellar

oblateness and gravity darkening.

2.4 Isothermal flow approximation

Another simplification retained from Paper I is that the flow is

strictly isothermal. This is generally a reasonable approximation

in steady-state, spherical wind models, wherein the competition be-

tween photoionization heating and radiative cooling keeps the wind

close to the stellar effective temperature (Pauldrach 1987; Drew

1989). However, models with significant magnetic channelling can

guide the flow towards strong shock compressions that heat the

gas to temperatures of millions of kelvin. The associated extensive

X-ray emission (Babel & Montmerle 1997a,b) has indeed been a

focus of some our previous simulations aimed at modelling the ob-

served X-ray spectrum from θ1 Ori C (Gagné et al. 2005). Moreover,

our other simulations show that reconnection heating associated

with centrifugally driven breakout events might provide a basis for

explaining the relatively hard X-ray flare events seen in the magnetic

B-star σ Ori E (ud-Doula et al. 2006).

While such detailed treatments of the wind energy balance can

thus be quite important for modelling the X-ray emission from spe-

cific stars, including this in the general parameter study here would

require introducing an additional free parameter, associated with the

wind density, and representing the relative importance of radiative

cooling in the post-shock region (ud-Doula 2003). This would in

effect require a 3D parameter study, representing cooling, magnetic

confinement and rotation. To maintain the focus here on just the one

additional degree of freedom associated with rotation, built upon

the study of isothermal magnetic confinement in Paper I, we again

assume a simple isothermal wind with the wind temperature kept

equal to the stellar effective temperature, here taken to be 50 000 K.

A further advantage is that, at such a temperature, the gas pres-

sure terms in equation (2) are typically unimportant throughout most

of the supersonic outflow. Thus, although these pressure terms are

still fully included in the numerical simulations, they can be largely

ignored in interpretation of results, allowing for a focus on the dom-

inant competing forces associated with gravity, radiative driving,

magnetic field and flow inertia.

2.5 Boundary conditions and numerical considerations

Finally, numerical specifications such as the computational grid and

boundary conditions are again similar to Paper I, except of course

that the lower boundary now has a non-zero azimuthal speed vφ(R∗,

θ ) = V rot sin θ , where V rot is the equatorial surface rotation speed.

Also, instead of setting the azimuthal field to zero at the stellar

surface, as in Paper I, we now compute a generally non-zero Bφ

at the lower boundary ghost zone by linear extrapolation from the

values in the two innermost zones of the actual computational grid.

This assumes vanishing second derivatives of the azimuthal field

components.

In all simulations presented here the time-step is based on rela-

tively low Courant number of 0.3, a choice that helps ensuring sta-

bility and reduced error in computed shock properties (Falle 2002).

Simulations of selected models with an even lower Courant number

of 0.1 gave very similar results to the standard runs.

3 T WO - PA R A M E T E R S T U DY

3.1 Magnetic confinement parameter η∗

Let us now consider how best to frame our parameter study for

the combined effects of rotation and magnetic channelling in a line-

driven wind. In the absence of significant rotation or magnetic fields,

the line force overcomes the stellar gravity to drive a nearly radial

wind outflow characterized by a mass-loss rate Ṁ and terminal wind

speed V∞. When a magnetic field is added, the inertia of this radial

outflow competes against the Lorentz forces. A key result of Paper I

is that the overall net effect of a magnetic field in diverting such a

wind outflow can be characterized by a single magnetic confinement
parameter,

η∗ ≡ B2
eq R2

∗
Ṁ V∞

, (6)

where Beq is the surface field strength at the magnetic equator. This

sets the scale of the ratio of magnetic energy to wind kinetic energy,

η(r ) ≡ B2/8π

ρv2/2
= η∗

[
(r/R∗)2−2q

(1 − R∗/r )β

]
=

(
VA

v

)2

= M−2
A . (7)

The last two equalities emphasize this energy ratio can also be cast

as the square of the ratio of the Alfvén speed, VA ≡ B/
√

4πρ,

to flow speed, v, i.e. as the inverse square of the Alfvénic Mach

number, MA ≡ v/VA.

The square bracket factor in the middle equality shows the overall

radial variation; q is the power-law exponent for radial decline of

the assumed stellar field, e.g. q = 3 for a pure dipole, and β is the

velocity-law index, with typically β ≈ 1. For a star with a non-zero

field, we have η∗ > 0, and so given the vanishing of the flow speed at

the atmospheric wind base, this energy ratio always starts as a large

number near the stellar surface, η(r → R∗) → ∞. But from there

outward it declines quite steeply, asymptotically as r−4 for a dipole,

crossing unity at the Alfvén radius defined implicitly by η(RA) ≡ 1.

For a canonical β = 1 wind velocity law, explicit solution for RA

along the magnetic equator requires finding the appropriate root of(
RA

R∗

)2q−2

−
(

RA

R∗

)2q−3

= η∗, (8)

which for integer 2q is just a simple polynomial, specifically a

quadratic, cubic or quartic for q = 2, 2.5 or 3. Even for non-integer

values of 2q, the relevant solutions can be approximated (via numer-

ical fitting) to within a few per cent by the simple general expression,

RA

R∗
≈ 1 + (η∗ + 1/4)1/(2q−2) − (1/4)1/(2q−2). (9)

For weak confinement, η∗ � 1, we find RA → R∗, while for strong

confinement, η∗ � 1, we obtain RA → η
1/(2q−2)
∗ R∗. In particular,

for the standard dipole case with q = 3, we expect the strong-

confinement scaling RA/R∗ ≈ 0.3 + η1/4
∗ .

Clearly RA represents the radius at which the wind speed v ex-

ceeds the local Alfvén speed VA. But Paper I showed that it also

characterizes the maximum radius where the magnetic field still

dominates over the wind, and is just somewhat above (i.e. by 20–

30 per cent) the maximum extent of closed loops in the magneto-

sphere. Moreover, as we shall see below, in rotating winds these

closed loop regions tend to corotate nearly rigidly with the under-

lying star, and in this sense RA is just above the maximum radius

for wind corotation near the equator. For convenience in discussing

results, let us thus denote the maximum radius of such closed (and
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generally corotating) loops as

Rc ≈ R∗ + 0.7(RA − R∗). (10)

3.2 Rotation parameter W

Let us next seek a similarly convenient parameterization for the

stellar rotation. This can again be characterized in terms of a speed,

namely the equatorial surface rotation speed V rot. But instead of

relating that to the flow speed or Alfvén speed in the stellar wind, the

stellar origin of rotation suggests it may be better to compare it to a

speed representative of the gravity at the stellar surface. Specifically,

let us thus define our dimensionless rotation parameter as

W ≡ Vrot

Vorb

, (11)

where Vorb ≡ √
G M/R∗ is the orbital speed near the equatorial

surface.2 This characterizes the azimuthal speed needed for the out-

ward centrifugal forces to balance the stellar surface gravity. It is

only a factor of 1/
√

2 less than the speed Vesc needed to fully escape
the star’s surface gravitational potential.

For a non-magnetic rotating star, conservation of angular momen-

tum in a wind outflow causes the azimuthal speed near the equator

to decline outward as vφ ∼ 1/r, meaning that rotation effects tend

to be of diminishing importance in the outer wind.

By contrast, in a rotating star with a sufficiently strong magnetic

field, magnetic torques on the wind can spin it up; for some region

near the star, i.e. up to about the maximum loop closure radius Rc,

they can even maintain a nearly rigid body rotation, for which the

azimuthal speed now increases outward in proportion to the radius,

vφ(r ) = Vrot

r

R∗
; r � Rc. (12)

As such, even for a star with surface rotation below the orbital speed,

W < 1, maintaining rigid rotation will eventually lead to a balance

between the outward centrifugal force from rotation and the inward

force of gravity,

v2
φ(RK)

RK

= G M

R2
K

. (13)

Combining this with equations (11) and (12) gives a simple expres-

sion for the associated ‘Kepler radius’,

RK = W −2/3 R∗. (14)

Unsupported material at radii r < RK will tend to fall back towards

the star, but any material maintained in rigid rotation to radii r > RK

will have a centrifugal force that exceeds gravity, and so will tend to

be propelled further outward. Indeed, any corotating material above

an ‘escape radius’, which is only slightly beyond the Kepler radius,

RE = 21/3 RK, (15)

will have sufficient rotational energy to escape altogether the local

gravitational potential, unless, of course, temporarily held down by

the magnetic field.

2 This is closely related to the commonly used rotation parameter ω ≡

/
crit, defined by the star’s angular rotating frequency 
 relative to the

value this would have as the star approaches ‘critical’ rotation, 
c. Our

choice here more directly relates to the additional local speed needed to

propel material into Keplerian orbit, and avoids some subtle assumptions

(e.g. rigid body rotation using a Roche potential for gravity) about how the

global stellar envelope structure adjusts to approaching the critical rotation

limit.
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Figure 1. Plot of rotation versus confinement parameter, W versus log η∗,

to define the models in our 2D parameter study, represented here as filled

and open circles, with the filled circles representing models of principal

focus for more detailed analyses. The solid curve represents the contour

for models with RA = RK when the magnetic index is set to the dipole

value q = 3. Models above this have RA > RK and thus strong confinement

plus rapid rotation, whereas models below have RA < RK and thus either

weak-confinement or relatively slow rotation.

3.3 2D parameter grid of models

The circles in Fig. 1 lay out the 2D grid of models computed for the

present study, plotted in the plane of rotation parameter W versus

log of the magnetic confinement parameter η∗. The models along

the x-axis include several specific cases already examined in the

non-rotating study in Paper I, with now however some additional

extensions towards the strong-confinement limit, namely log η∗ =
1.5, 2, 2.5 and 3. In addition, there are now two new sets of cor-

responding models with rotation parameters W = 0.25 and 0.5. As

noted, we do not consider faster rotation than W = 0.5 because this

would introduce a significant stellar oblateness that would compli-

cate specification of the lower boundary condition for the spherical

coordinate system used in the ZEUS MHD code.

The solid curve in Fig. 1 represents the parameter combination for

which RA = RK in the dipole case (q = 3) with velocity index β = 1.

This contour thus roughly divides the parameter space diagonally:

models below and to the left-hand side have only slow rotation

and/or weak confinement, and so RA < RK; models above and to the

right-hand side have fast rotation and/or strong confinement, and so

RA > RK.

Our analysis of the associated simulations show that the lower

left-hand models give generally quite similar overall structure to

what was found for the non-rotating models in Paper I. The more

interesting cases are those in the regions above and/or to the right-

hand side, and in the transition region with RA ≈ RK.

The transition region represents cases for which the magnetic

spin-up is just adequate to propel material into Keplerian orbit. As

such, it might seem to be appropriately fine-tuned to produce the

kind of MTD advocated by Cassinelli et al. (2002). However, as

discussed below and in previous papers (Owocki 2006; Owocki

et al. 2006, 2007; ud-Doula et al. 2006), our simulations indicate that

even for these optimal parameter cases, the rotating magnetosphere

is characterized by a combination of infall and outflow, respectively,

below and above the Kepler radius, with no apparent tendency to

form an extended, stable, Keplerian disc.

On the other hand, in the limit of strong confinement with RA �
RK, the dominance of the field can confine the material in a rigid body
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disc, as postulated in the ‘RRM’ formalism developed by TO-05.

The full MHD simulations here allow us to directly test this RRM

concept, and define its limitations as wind material accumulates

in the disc, leading eventually to a centrifugally driven breakout

overcoming the confining magnetic tension (see ud-Doula et al.

2006, and appendix of TO-05). Towards this goal, the magnetic

confinement parameters considered here extend to values (η∗ =
1000) that significantly exceed the maximum (η∗ = 10) attempted

in the non-rotating study of Paper I.

Such models with strong magnetic confinement are, in fact,

significantly more computationally challenging, since the greater

rigidity of the magnetic field implies a higher Alfvén speed (see

Appendix A), and thus requires a smaller numerical time-step to

maintain stability under the Courant criterion. Indeed, this problem

is often exacerbated by the tendency for the strong, nearly horizon-

tal field near the magnetic equator to completely inhibit any wind

base outflow there; this leads then to short-lived nearly evacuated

regions where the Alfvén speed can become exceedingly large, for-

mally even approaching the speed of light! To keep the time-step

from becoming too small, we thus choose to artificially add mass to

these small evacuated regions at a level that is sufficient to limit the

local Alfvén speed to

VA � max(20 000 km s−1, max(VAp)), (16)

where

max(VAp) = 0.65
√

η∗ V∞ (17)

is the expected maximum polar Alfvén speed, as given by the anal-

ysis in Appendix A. We check that the amount of artificially added

mass is still quite insignificant compared to the global mass-loss in

the wind, i.e. less than a per cent in even the most extreme (η∗ =
103) cases.

Moreover, the larger Alfvén radius means such models need gen-

erally a larger outer boundary radius, and the larger breakout time-

scale (as predicted in the appendix of TO-05) means that models

have to be run longer to cover the breakout cycles and associated

accumulation of mass in any RRM disc. Finally, as discussed further

below, the closed magnetic topology of episodic outbursts can com-

plicate the proper specification of the outer boundary condition, and

in practice reflection effects as these outbursts are advected through

the boundary can occasionally even halt the computation altogether.

In summary, the extension of MHD simulations into the very strong-

confinement domain remains an ongoing challenge.

3.4 Stellar and wind parameters

Much of the procedures in the current study follows Paper I. Specif-

ically, we use the same standard non-magnetic and non-rotating
wind model used in Paper I, but now at the initial time we suddenly

introduce both a dipole magnetic field, and a surface rotation at

the lower boundary, with both defined relative to a common polar

axis. This standard model has stellar parameters representative of

a typical OB supergiant, with a radius R∗ = 19 R
, a luminosity

L = 106 L
 and an effective mass of M = 25 M
. (This reflects

a factor of 2 reduction below the Newtonian mass to account for

the outward force from the electron scattering continuum.) This ra-

dius and mass imply an effective equatorial surface orbital speed of

Vorb ≈ 500 km s−1.

The line driving assumes a CAK power index α = 0.6 and a line

normalization such that the non-magnetic, non-rotating wind has

a mass-loss rate of about Ṁ ≈ 3 × 10−6 M
 yr−1 and a terminal

speed of about V∞ ≈ 2400 km s−1. Since both the stellar and wind

parameters are fixed, we vary the magnetic confinement parameter

η∗ solely through the variations in the assumed equatorial surface

field strength, Beq. As noted above, we do not consider rotation

parameters W > 1/2 since this would deform the stellar surface

and require consideration of gravity darkening, neither of which are

taken into account in our models.

One further difference compared to the simulations in Paper I is

that we find it necessary to run the rotating models here for a longer

time in order to identify properties of a relaxed, quasi-stationary

asymptotic state (especially for the strong-confinement models). To

facilitate comparison among different cases, we standardize a run

to duration of t = 0–3 Ms, which is already six times longer than

the 0.5 Ms used in Paper I. But we have also run selected models

for a longer time, e.g. 6 Ms for our standard case with W = 1/2 and

η∗ = 100. Required run times per model are typically about one to

two weeks on a standard workstation.

4 R E S U LT S

4.1 Corotation and rigid disc

As a standard example to frame the overall study here, let us first

focus on this case with confinement η∗ = 100 and rotation W = 1/2

(V rot = 250 km s−1). Fig. 2 shows a series of time snapshots of the

2D spatial configuration of the magnetic field (solid lines), with the

colour scale representing logarithm of density; Fig. 3 gives a similar

time sequence for the azimuthal flow speed, scaled relative to the

value that would occur in rigid rotation, i.e. χ ≡ vφ(r)/
r sin θ ,

where 
 ≡ V rot/R∗ is the star’s angular rotation frequency. The

time snapshots were chosen to illustrate both relatively quiescent

intervals (top panels), and phases with dynamic centrifugal breakout

(bottom panels). The dashed circle represents the Kepler corotation

radius at the equator (RK ≈ 1.6R∗).

In the evolution immediately following the initial condition, the

magnetic field channels wind material towards the tops of closed

loops near the equator, where the collision with the opposite stream

leads to a dense disc-like structure (see top panels). But the gas is

also generally torqued by the field, with, as can be seen in the upper

panels of Fig. 3, material in the closed magnetosphere up to Rc ≈
2.7 R∗ kept nearly in rigid body corotation with the star. Note that

these closed, rigidly rotating loops thus extend through and beyond

the Kepler radius. For any material trapped on loops below RK, the

outward centrifugal support is less than the inward pull of gravity;

since much of this material is compressed into clumps that are too

dense to be significantly line driven, it thus eventually falls back to

the star following complex patterns along the closed field loops.

By contrast, the dense material above the dashed line at RK has a

net radially outward force from the centrifugal acceleration versus

gravity. Still, during the initial build-up of this material at the tops

of loops above RK, the magnetic field provides tension that is strong

enough to hold it down, forming then a segment of the rigidly rotat-
ing disc predicted in the analytic RRM analysis by TO-05. However,

much as anticipated in the appendix of their paper, eventually mate-

rial in the outer region of this RRM accumulates to sufficient density

to force open the magnetic field, leading to the kind of centrifugally

driven breakout events simulated in (ud-Doula et al. 2006). This is

illustrated here in the bottom panels of Fig. 2.

Note, however, from Fig. 3 that certain regions, marked in blue,

actually have a net azimuthal motion that is against the sense of the

stellar rotation. This surprising and counterintuitive result is not a

numerical artefact, but rather is related to a reverse torque effect that

occurs in regions of rapid wind acceleration. This was first discussed
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Figure 2. Snapshots of density (in CGS units on a logarithmic colour scale) and field lines (solid lines) at the labelled time intervals for the model with

η∗ = 100 and W = 1/2. The top panels show the model during a relatively quiescent period, when a dense rigidly rotating disc is being gradually built up.

Note, however, that material below the Kepler corotation radius (RK, shown as a dashed circle) falls back on to the stellar surface, due to the lack of sufficient

centrifugal support. The extent of the disc in this phase is determined by the magnetic field strength and extends up to the Alfvén radius RA ≈ 3.4 R∗, which is

somewhat above the maximum outer radius of closed magnetic loops, Rc. The bottom panels show the model later in the evolution, during one of the episodic

centrifugal breakout events.

by MacGregor & Friend (1987), who extended the classic Weber &

Davis (1967) 1D magnetic monopole rotation model for the solar

wind to the case of the more rapidly accelerating line-driven winds.

The 2D analogue for the dipole field here has little impact on our

study of rotation and magnetic confinement, and so we defer further

discussion to an upcoming paper that focuses on the role of the

magnetic field in outward angular momentum transport and stellar

spin-down.

The centrifugal breakouts occurring in these simulations neces-

sarily imply a breakdown in the basic formulation for ideal MHD

within the ZEUS code. In equatorial regions where the wind or cen-

trifugal terms stretches out field lines of opposite polarity, the finite

grid resolution allows effective reconnection, with the associated re-

lease of magnetic energy effectively lost instantaneously (e.g. due to

radiative cooling) in these isothermal simulations. This is admittedly

a simplified representation of the very complex physics thought to

occur in actual reconnection, which indeed is an intense area of mod-

ern plasma physics research (Shay et al. 1999). But in the present

context of driven reconnection, the overall global evolution seems

likely to be set by the central competition between magnetic con-

finement and centrifugal breakout, with relatively little sensitivity

to the details of local reconnection sites.

4.2 Global evolution of equatorial disc in radius and time

A key result of the simulations here is that there is really no true
steady state possible, since the secular build-up of material in the

disc must eventually lead to an episodic material breakout once the

centrifugal forces overwhelm the finite magnetic tension. One pri-

mary goal of the more extensive parameter study here is to examine

in detail the nature of this build-up and dissipation of mass in an

RRM disc, and how this varies with the changes in the rotation rate

and magnetic confinement. To facilitate illustration of these com-

peting processes, let us define a radial mass distribution of the disc,

computed at each radius r in terms of the mass within some specified

colatitude range about the equator,

dme(r , t)

dr
≡ 2πr 2

∫ π/2+
θ/2

π/2−
θ/2

ρ(r , θ, t) sin θ dθ. (18)
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Figure 3. For the same model and same time snapshots as in Fig. 2, the azimuthal speed scaled by the local corotation speed, χ ≡ vφ/
r sin θ ). During the

quiescent period the magnetosphere extends nearly to the closure radius Rc ≈ 2.7R∗, and corotates almost rigidly with the star (top panels). However, during

episodic centrifugal breakouts (bottom panels) this RRM shrinks nearly to RK ≈ 1.6R∗, represented by the dashed circle. In addition to the mass lost to the

breakout, this also helps some of the disc mass to leak inward as infall back on to the star.

Disk
10

r

o

Star

Figure 4. Schematic diagram illustrating the computation of the radial mass

distribution of the equatorial disc, dme/dr (see equation 18). We choose a

cone angle of 
θ = 10◦ centred on the magnetic equator to encompass most

of the material in the disc. We then compute the total mass 
m contained in

a narrow strip 
r within the cone. Note, however, that some of the material

may not lie within the cone during infalling episodes.

To isolate the disc but not miss too much disc material during various

oscillations about the equator, we choose a narrow, but not-too-

limited range 
θ = 10◦. Fig. 4 shows schematically how this is

computed.

For the same standard case (W = 0.5, η∗ = 100) shown in Figs 2

and 3, Fig. 5 shows a colour scale plot of this disc mass versus

radius (on the ordinate) and time (on the abscissa). The horizontal

lines mark, from top to bottom, the estimated Alfvén radius RA ≈
3.4R∗, the loop closure radius Rc, Kepler radius RK ≈ 1.6R∗, and

inner disc radius, Rin ≡ (2/3)1/3 RK ≈ 1.4R∗ (see equation 19 of

TO-05). Within the RRM model, the last represents the location

where the effective potential along a rigid field loop first develops

a local minimum, which can then trap material fed from the wind.

The plot shows quite succinctly, and vividly, the global time evo-

lution of the equatorial disc material. Initially mass builds up in the

region around RK, but then there appear repeated episodes of infall

of inner disc material back on to the star, about every 200 ks or so.

This leads to a gradual outward progression to the lower edge of the

disc material.

But over a somewhat longer time-scale, about every 1 Ms or

so, there appears another, somewhat different kind of disruption,

one that starts higher up, closer to the closure and Alfvén radii.

This is characterized by outward ejection of the upper disc mass,

but then also a ‘rebound’ that propagates back down towards

the Kepler radius, pushing the trapped disc material inward, and
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Figure 5. For MHD simulations of the standard model case with η∗ = 100

and W = 1/2, the logarithm of the radial distribution of mass, dme/dr, within

a cone of width 
θ = 10◦ centred on the equator, plotted versus time and

radius (in units of stellar radius). The colour bar shows log (dme/dr) in units

of M
/R∗. The horizontal lines indicate the Alfvén radius RA (solid), the

maximum loop closure radius Rc (dotted), the Kepler radius RK (dashed)

and the inner RRM disc radius Rin = (2/3)1/3 RK (dot–dashed). Note the

accumulation of mass in a disc near the Kepler radius, and how this is limited

both by relatively frequent (ca. every 200 ks) intervals of downward infall,

and by less frequent (ca. every 1 Ms) major disruptions with substantial

upward breakout.

inducing a further leakage of disc mass through downward infall.

The overall effect is to regulate the disc mass so that, by the end

of the simulation at t = 3 Ms, the addition of new material from

the wind becomes roughly balanced by the losses to both infall and

ejection.

The overall structure is certainly quite dynamic, but near the Ke-

pler radius there none the less appears to be a quasi-permanent

disc segment that corresponds roughly to what is predicted by

the RRM analytic analysis of TO-05, as well as by the recent

time-dependent rigid field hydrodynamics (RFHD) simulations of

Townsend, Owocki & ud-Doula (2007).

4.3 Comparison with RRM breakout analysis

Both the RRM and RFHD approaches are based on the idealiza-

tion that the field is arbitrarily strong, and so remains perfectly

rigid regardless of the amount of material in either the wind out-

flow or the disc build-up. But the associated discussion for both

approaches recognized that the secular accumulation of material in

the rigid body disc would eventually cause the outward centrifugal

forces to overwhelm the available inward tension associated with

any large but finite magnetic field. In fact, the appendix of TO-05

presents a simplified, but quantitative analysis of the resulting ex-

pected ‘breakout’ of accumulated disc material. This anticipates, at

least in general terms, several aspects of the processes seen in the

present MHD simulations. In particular, it makes quite specific pre-

dictions for both the breakout time-scales as a function of radius, and

for the asymptotic mass accumulation near the Kepler radius. In this

section, let us thus attempt a specific, semiquantitative comparison

between those predictions and the results of the MHD simulations.

4.3.1 Breakout time-scale

Without benefit of the global dynamical picture available from the

MHD simulations here, the TO-05 breakout analysis focused instead

on the conditions for breakout at each local radius, conveniently

scaled in terms of the Kepler radius as ξ ≡ r/RK. From equation (A6)

of TO-05 we find that, in terms of the free-fall time tff ≡ R∗/Vesc,

the breakout time for some scaled outer disc radius ξo is given by

tb ≈ η∗tff

6ξ∗/ξo

ξo
3 − 1

. (19)

Here we have approximated
√

π/μ∗ ≈ 2 (cf. equation A8 of

TO-05), and used the ratio of wind terminal speed to escape speed,

V∞/Vesc ≈ 3, to convert the disc confinement parameter (also de-

noted η∗) in TO-05 into the wind confinement parameter defined

here.3 Note also that the Kepler-scaled stellar radius can be written

as ξ ∗ = R∗/RK = W2/3.

Applying our stellar free-fall time tff ≈ 19 ks, then for our standard

(η∗ = 100, W = 1/2) model, the predicted breakout time is

tb ≈ 7 Ms

ξo(ξo
3 − 1)

. (20)

In the MHD simulations for this standard case, the breakouts seem

to originate around Rc ≈ 2.7R∗, for example as indicated in Fig. 5 by

the ‘bifurcations’ between upward and downward tracks that start

at r � 3R∗ for times around 800, 1600 and 2700 ks. If we thus

approximate the outer disc radius by this maximum loop closure

radius, we find ξo = Rc/RK ≈ 1.7 and so tb ≈ 1 Ms, about the time-

scale between major breakout eruptions seen in these same MHD

simulations.

The TO-05 breakout analysis envisioned a hierarchy of breakout

time-scales, with more frequent eruptions occurring at larger radii;

but its concluding paragraph also anticipated (partly based on early

versions of the MHD simulations described here) that breakouts

originating within r � 2RK could also lead to substantial disruption

of the entire magnetosphere. The simulations here do indeed show

such major disruptions, but even after these there remains substantial

mass near the Kepler radius.

4.3.2 Accumulated disc mass

For a disc with a scaled outer breakout radius ξo, equation (A10) of

TO-05 predicts a specific scaling for the total asymptotic disc mass,

which in terms of the parameters here can be written as

md(ξo) = 3
√

π Ṁ tff η∗ W 4/3

ξo
2(ξo

2 + ξo + 1)

= 2.1 × 10−9 M

η∗W 4/3

ξo
2(ξo

2 + ξo + 1)
, (21)

where the latter gives the numerical scaling for the stellar and wind

parameters used here. If we then apply the confinement and parame-

ters of our standard model, and use the characteristic breakout radius

ξo ≈ 1.7 adopted above, we obtain a predicted total disc mass of

md ≈ 1.6 × 10−8 M
.

Fig. 6 compares this predicted mass (red horizontal dashed curve)

with the time variation of three types of cumulative mass in the

standard model MHD results. Specifically, the top curve (black)

shows the total integrated mass in the entire grid, including regions

3 Although a footnote in the appendix of TO-05 seems to imply that B∗
and Beq are distinct, they are in fact both equal to the field strength at the

equatorial surface.

C© 2008 The Authors. Journal compilation C© 2008 RAS, MNRAS 385, 97–108



Effects of field-aligned rotation 105

0 500 1000 1500 2000 2500 3000

0.0

1.0x10
-8

2.0x10
-8

3.0x10
-8

4.0x10
-8

M
a

s
s
 (

M
O

)

Time (ksec)

Total

Wind+Disk

Disk  R
in

-Rc 

Disk  > Rc

Figure 6. Cumulative mass versus time in MHD simulations for the stan-

dard model case. The top curve shows the total mass in the entire grid, i.e.

including both disc and wind material. The middle curve shows the disc

mass within 5◦ of the equator, and within radii bounded by the inner RRM

disc radius Rin and an outer radius Ro = Rc. The bottom curve shows equa-

torial mass above this outer radius. The horizontal dashed line indicates the

cumulative disc mass predicted by the RRM breakout analysis, using this

same outer radius. Note that it matches quite well the varying asymptotic

value of the middle curve, showing the disc mass in the MHD simulation.

of both wind and disc; the middle curve (red) gives the cumulative

mass in the equatorial disc region between the inner radius Rin ≈
0.87RK ≈ 1.4R∗ and outer radius Ro ≈ Rc ≈ 2.7R∗; and finally, the

bottom curve (blue) shows the equatorial mass above this outer disc

radius, r > Ro ≈ Rc.

Note in particular that the predicted asymptotic disc mass agrees

remarkably well with this MHD simulation disc mass as shown by

the middle, red curve. Of course, this is partly fortuitous, since just a

10 per cent change in the choice of outer disc radius ξo would imply a

ca. 40 per cent change in disc mass. But the overall, order–magnitude

agreement seems likely to be quite robust, and so provides a nice

consistency check for both the RRM analysis and numerical simu-

lations.

Comparison of the middle and upper curves in Fig. 6 further shows

that the total mass in the thin, radially limited disc represents about

half of the total mass in the entire model. In part, this reflects the

fact that, for such a strong-confinement model, a large fraction of

the outgoing wind gets channelled into the disc. But another factor

is that the wind material is flowing outward at a very high speed, and

so has a much shorter ‘residency time’ than the trapped, relatively

static material in the disc.

4.3.3 Limitations of a localized breakout description

Despite this general success of the local breakout analysis in match-

ing both the overall breakout time-scale and the accumulated disc

mass of this MHD simulation, the specifics of the dynamical evo-

lution seen in the simulation make clear that the breakout process

is really a global phenomenon. As the accumulation of material in

the outer disc regions stresses and eventually overcomes the inward

restraint of the magnetic field, the associated outward stretching al-

ters the global field, including in the inner regions near the Kepler

radius. Moreover, once a breakout occurs, the release of this stretch-

ing causes the inner, closed field lines to snap back inward, much

like a stretched rubber band after release. The overshoot can push

disc material below the Kepler radius and trigger infall back on to

the star.

Overall, the wind-fed accumulation of disc mass is thus balanced

not just by ejection outward, but also by infall inward. In contrast

to the idealized picture of the breakout analysis, which formally

predicts the time-scale for breakout (and thus emptying) of mate-

rial right at the Kepler radius to become arbitrarily long, the dy-

namic oscillation and associated inward spillage of material limits

the asymptotic mass accumulated in this region. This new perspec-

tive on the dynamical nature of the disc mass budget has potentially

important implications for modelling and interpreting observational

diagnostics (see Townsend et al. 2005, 2007).

4.4 Comparison with non-rotating model

To demonstrate further the role of rotation in how magnetic fields

influence a wind outflow, let us now compare the results of this

η∗ = 100, W = 1/2 case with the corresponding non-rotating model.

Fig. 7 illustrates the dynamic evolution of equatorial mass for this

strong-confinement case without rotation. Comparison with Fig. 5

shows that there are still both breakout and infall episodes, but now

with both originating from nearly the same location, at roughly

the loop closure radius Rc. This infall from throughout most of

the closed field region reflects the lack of any centrifugal support

against gravity, and as such, there is no longer any accumulation of

material into a circumstellar disc. The breakouts remain, but instead

of being driven by centrifugal forces, these are now the result of

entrainment of the field with the outflowing wind. The time-scales

for both breakout and infall are comparable to the rotating case, but

seem somewhat more irregular. Overall, without the build-up in the

disc, there is significantly less mass in the magnetosphere than in

the rotating case.

Figure 7. As in Fig. 5, the logarithm of the radial distribution of equatorial

mass, d me/d r, again plotted versus time and radius for a strong confinement

(η∗ = 100) model, but now with no rotation (W = 0). The horizontal lines

indicate the Alfvén radius RA (solid) and loop closure radius Rc (dotted).

Note that there are again complex patterns of breakout and infall, but now

with more irregular time-scales, and with the infall extending up to regions

of breakout, near the loop closure radius. As such, there is no longer an

extended region of mass accumulation into a circumstellar disc.
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4.5 Results for variation in parameters

To provide a wider context to these detailed results for specific

cases with strong confinement, let us now analyse results spanning

a broader range of the 2D parameter space for rotation and confine-

ment strength. Before focusing further on equatorial disc material,

let us first briefly consider the effects of various magnetic field

strengths and rotation rates on the global mass-loss from the stellar

wind.

4.5.1 Global mass-loss

As discussed in Paper I, one general effect of a strong magnetic field

on a wind is the confinement and inhibition of the outflow within a

belt around the magnetic equator. For a dipole field line that reaches

up to the maximum closure radius Rc, the colatitude θ c at the surface

footpoint satisfies

sin θc =
√

R∗/Rc. (22)

The fraction of the stellar surface area that is covered by closed field

lines is given by cos θ c, leaving thus only the remaining fraction 1 −
cos θ c as the source of wind mass-loss. For the non-rotating case, we

can thus use this open-field fraction to estimate the overall magnetic

reduction in the mass-loss rate,

ṀB

ṀB=0

≈ 1 −
√

1 − R∗/Rc, (23)

where Rc is evaluated from equation (10), with the Alfvén radius RA

from equation (9) using q = 3. Note that this ignores higher order

effects, such as the reduction of the mass flux in open field regions

due to the tilt of surface field relative to the radial direction for wind

driving (see Owocki & ud-Doula 2004).

The two panels in Fig. 8 compare the mass-loss rate versus√
η∗(∝ B) for both simple analytic scalings (bottom) and results

of numerical MHD simulations (top), with the lower, middle and

upper curves in each panel corresponding to the W = 0, 1/4 and

1/2 rotation models. For the non-rotating case, the numerical and

analytic results shown in the lower curves are in good overall agree-

ment. But for the rotating case, the upper curves in the top panel

show that the tendency of the strong field to reduce the overall mass-

loss rate is somewhat compensated by faster rotation, and in the W =
1/2 case, even flattens to nearly constant towards the limit of strong

confinement. This reflects the additional effect of centrifugal forces

in driving the breakout of material initially trapped in closed loops

near and below the confinement radius Rc. In effect, the rotation

allows eventual breakout from loops that are some factor times the

Kepler radius, say 2RK.

To take this into account in an analytic scaling formula, the upper

two curves in the lower panel use a modified form of equation (23),

Ṁ B

Ṁ B=0

≈ 1 −
√

1 − R∗/Rc + 1 −
√

1 − 0.5R∗/RK, (24)

which effectively sums separate contributions from polar opening

and rotational breakout, with the closure and Kepler radii computed

from equations (9), (10) and (14). With this generalized scaling, the

overall variations of the analytic curves in the lower panel roughly

match the corresponding MHD results in the upper panel.

4.5.2 Equatorial mass and disc

Let us next examine how the equatorial disc region is affected by

variations in the magnetic confinement and rotation parameters.
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Figure 8. Top panel: Average mass-loss rate (in units of the non-rotating,

non-magnetic case) for MHD models with various rotational rates W =
0, 1/4, 1/2 plotted against

√
η∗ ∝ B∗. Note that for W = 1/2 the mass-

loss rate is nearly constant for models with high confinement η∗ > 25.

Bottom panel: Corresponding mass-loss rates from the analytic scaling

formula in equation (24).

Fig. 9 compares the radius and time evolution of the equatorial

mass, dme/dr, for an mosaic of models with various η∗ and W. The

comparison provides a global overview of how the equatorial mass

evolution is affected by changes in confinement and rotation.

For weak rotation and confinement cases in the lower left-hand

panels, material generally escapes outward without much infall,

with only a modest rotational enhancement in mass-loss. But most

other models again show a complex competition between infall and

breakout, with the latter always being less frequent and stronger.

In particular, this complex combination of infall and breakout

also dominates the RA ≈ RK transition models identified in Fig. 1,

i.e. the ones here with log η∗ = 1/2 and W = 1/2 or log η∗ = 3/2

and W = 1/4. Such models might seem optimally fine-tuned to

propel material into Keplerian orbit, and yet they show no apparent

tendency for material to accumulate into the extended, Keplerian

disc envisioned in the MTD scenario suggested by Cassinelli et al.

(2002). The lack of a sharp outer cut-off in the large-scale dipole

field makes it incompatible with the shear of a Keplerian disc, and

without the closed loops that hold down a rigid disc in the strong-

confinement limit, material is propelled outward to escape, rather

than into a stable Keplerian orbit.

As expected, accumulation into such a rigid body disc is the

strongest for the fastest rotation, and the strongest confinement, as

shown by models at the upper right-hand side. For strong confine-

ment but slow or no rotation, the material infall comes from a greater
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Figure 9. Logarithm of radial distribution of equatorial disc mass, d me/d r versus radius and time, for a mosaic of models with magnetic confinements

log(η∗) = 1/2, 1, 3/2, 2, 5/2 and 3 (columns from left-hand side) and rotations W = 0, 1/4 and 1/2 (rows from bottom) with the same contour levels and the

ranges for time and radius as in Fig. 5. Again, the horizontal lines indicate the Alfvén radius RA (solid) and the Kepler radius RK (dashed).

height, set by the closure radius, which increases roughly as Rc ∼
η1/4

∗ .

This larger infalling height seems also to lead to a somewhat

longer infalling time-scale. Likewise, the breakout time-scale also

seems to increase for models with stronger confinement parameter

η∗, but not quite in the linear proportion that might be suggested

by equation (19). The reason is that the scaled outer confinement

radius ξo appears in the denominator, and since this also increases

with confinement through it dependence on the closure the radius

Rc, the net effect is to weaken the η∗ sensitivity of tb, especially in

the strong-confinement limit η∗ � 1.

Note also that the W = 1/2 rotation model with the strongest

confinement, η∗ = 1000, is relatively stable, without the repeated

equatorial infalling events seen in other models. Instead of the ex-

tensive north–south disc oscillations seen in other models, in this

case the variations of the equatorial disc are mostly symmetric about

the equator, and thus do not induce as much ‘spillage’ back on to

the star. The recent analysis of ‘RFHD’ models by Townsend et al.

(2007) show that both types of oscillation modes are allowed, with

the one dominating in simulations depending on subtle details of

the excitation processes.

But overall, it seems that the basic principals gleaned from the

detailed study of the standard, strong-confinement case can be quite

logically generalized to understand the trends in properties seen

from this mosaic of models spanning a broad range of rotation and

confinement parameters.

5 S U M M A RY A N D F U T U R E WO R K

This paper examines the effects of field-aligned rotation on the mag-

netic channelling and confinement of a radiatively driven stellar

wind. It builds upon the non-rotating models of Paper I, extending

them to cases of much stronger magnetic confinement (up to η∗ =
1000), and comparing a full spectrum of models ranging from weak

to strong confinement at equatorial rotation rates from zero to a

substantial fraction (W = 1/4 and 1/2) of the critical (or orbital)

limit. As an initial study, it ignores the effects of oblateness, gravity

darkening and limb darkening, and is based on an idealization of

isothermal flow driven by a purely radial line force.

The key results can be summarized as follows.

(i) The 2D parameter space represented by rotation W and mag-

netic confinement η∗ can be conveniently divided by comparing the

Kepler radius RK ≈ W−2/3 R∗ with the Alfvén radius RA ≈ η1/4R∗.

(ii) Models with RA < RK have weak rotation and/or magnetic

confinement, with the effects of rotation limited to some modest en-

hancement in equatorial density and overall mass-loss rate, relative

to non-rotating cases. In general any magnetically confined material

falls back to the star.

(iii) Transition models with RA ≈RK have a complex combination

of inner region infall and outer region breakout, but show no signs

of accumulation of material into the kind of extended Keplerian disc

posited in the MTD paradigm of Cassinelli et al. (2002).

(iv) In models with RA > RK the strong magnetic confinement

combines with a sufficiently rapid rotation that can support material

against infall near and above the Kepler radius, with then the mag-

netic field both holding material in nearly rigid body rotation, and

keeping it confined against the tendency for the centrifugal force to

propel material outward against gravity.

(v) Such strongly confined rotation models show a clear accumu-

lation into a rigid body disc, much as predicted in the analytic RRM

formalism of TO-05.

(vi) However, the present MHD simulations show that such rigid

body discs can be highly dynamic and variable, with mass accumu-

lation regulated by a complex combination of inner disc infall and

outer disc breakout.
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(vii) None the less, application of the simple breakout analysis

introduced by TO-05 – slightly modified to identify the outer disc

limit with the maximum radius of loop closure – provides a quite

good, semiquantitive agreement with both the breakout time-scale

and limiting disc mass of the MHD simulations.

(viii) The breakout events here are similar to those discussed by

ud-Doula et al. (2006), except the assumption here of isothermal

flow precludes us from following that paper’s specific application

to modelling X-ray flares.

There thus remains much work for future extensions of the present

study, including relaxation of the assumptions of isothermal flow,

purely radial driving, 2D axisymmetry with aligned dipole field and

moderate rotation rates for which stellar oblateness can be neglected.

To more fully test the RRM paradigm, there is also a need to

extend MHD simulations even further into the large confinement

limit, to approach as closely as possible the estimated η∗ ≈ 107

appropriate for Bp stars like σ Ori E.

But even within the context the present set of models, we have

ignored here another key effect of magnetic rotation, namely the

outward angular momentum loss in the stellar wind, and the asso-

ciated spin-down of the underlying star. This omission was made to

allow a more directed focus on the already quite interesting, com-

plex and subtle effects of rotation on magnetic confinement and disc

formation. But we have already carried out an extensive analysis of

the implications of our study for angular momentum loss and stellar

spin-down, and so intend this to be the subject for the next paper in

this series.

AC K N OW L E D G M E N T S

This work was carried out with partial support by NASA Grants

Chandra/TM7-8002X and LTSA/NNG05GC36G, and by NSF grant

AST-0507581. We thank D. Cohen, M. Gagné, D. Mullan, A. J. van
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A P P E N D I X A : M A X I M U M P O L A R A L F V É N
S P E E D

We derive here equation (17) cited in Section 3.3, giving a sim-

ple scaling relation between the expected maximum polar Alfvén

speed and the wind magnetic confinement parameter. We begin by

repeating equation (7) relating the ratio of magnetic to wind energy

density to the ratio of Alfvén speed to flow speed,

η(r ) ≡ B2/8π

ρv2/2
=

(
VA

v

)2

. (A1)

Here the density ρ can be eliminated by noting that, for a steady-

state, magnetically channelled flow, the lack of divergence in both

the field and mass flux requires

4πρv

B
= constant ≡ Ṁ

Bp R2∗
, (A2)

where we have normalized in terms of a polar surface field Bp and

global mass flux Ṁ . For a polar field that declines with radius as

B = Bp(R∗/r)q , this gives for the polar Alfvén speed,

V 2
Ap = Bp R2

∗
Ṁ

Bv = 4η∗

(
R∗
r

)q

vV∞, (A3)

where the latter equality casts this in term of the magnetic confine-

ment parameter, with the factor of 4 correcting for the fact that our

standard η∗ is defined in terms of the equatorial surface field Beq,

which is half the polar value Bp. If we further assume a standard

β = 1 velocity law, then

VAp = 2
√

η∗ V∞

(
1 − R∗

r

)1/2 (
R∗
r

)q/2

. (A4)

Setting the radial derivative of this to zero shows that the maximum

occurs at radius r = (1 + 1/q) R∗, i.e. at r = (4/3) R∗ for the standard

dipole case with q = 3. Plugging this radius into equation (A4), we

find that the expected maximum Alfvén speed for dipole expansion

of the polar wind is

max(VAp) =
√

27

8

√
η∗ V∞ ≈ 0.65

√
η∗ V∞. (A5)

This thus provides a simple rule for the maximum Alfvén speed

to allow in running MHD simulations with increasing magnetic

confinement parameter, as discussed in Section 3.3.
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