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ABSTRACT
Through the adoption of the so-called ‘traditional approximation’, a new semi-analytical for-
mula is derived for the light variations produced by low-frequency g modes in uniformly
rotating stars. The formula is used to examine the influence of rotation on the variability
produced by a stellar model representative of the slowly pulsating B-type class.

It is found that, for all apart from prograde sectoral modes, the Coriolis force acts to trap
pulsation within an equatorial waveguide. Towards rapid rotation and/or low pulsation fre-
quency, this waveguide becomes so narrow that only a thin band around the stellar equator
makes any appreciable contribution toward flux changes. As a result, unless viewed from near
the poles, the variability exhibited by the star becomes very small, possibly explaining why
recent photometric observations of rapidly rotating stars have failed to find much evidence for
the presence of low-frequency modes.

It is further demonstrated that the ratio between the variability amplitude in pairs of passbands
depends, with the introduction of rotation, both on the azimuthal order of a mode, and on the
location of the observer in relation to the rotation axis of the star. This means that the standard
photometric techniques used to identify modes in non-rotating stars cannot easily be applied
to systems where rotation is significant.
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1 I N T RO D U C T I O N

A singular event in the study of stellar non-radial pulsation (NRP)
was the derivation, by Dziembowski (1977), of a semi-analytical
formula for the light variations produced by a pulsating star. Not
only has this formula been used extensively to establish that NRP is
responsible for the flux changes seen in many disparate classes of
variable star, it has also facilitated the identification of the specific
modes responsible for these changes. In particular, the formula un-
derpins the so-called amplitude-phase and multicolour-amplitudes
diagnostic techniques, developed by Stamford & Watson (1981)
and Heynderickx, Waelkens & Smeyers (1994), respectively, which
permit the derivation of the harmonic degree � of pulsation from
observations of flux changes in two or more photometric passbands
(see, e.g., Cugier, Dziembowski & Pamyatnykh 1994; De Cat 2001).

Historically, these mode identifications have been sought after
as an end in themselves. However, with the outstanding success of
the Hipparcos mission in discovering many new putative non-radial
pulsators (see, e.g., Waelkens et al. 1998), and looking forward to
current and future space-based missions, which can be expected to
find many more (Eyer 2000), the era nears where the technique of
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asteroseismology can be applied to all classes of pulsating star – not
just to the Sun, for which the superb quality of observational data
permits the establishment of tight constraints on its internal structure
(e.g. Gough & Toomre 1991). Toward this end, mode identifications
will doubtless play a crucial role.

Since its inception, Dziembowski’s (1977) formula has evolved
significantly. Stamford & Watson (1981) effected a substantial sim-
plification, by replacing integral terms with analytical equivalents;
subsequent work by Watson (1987, 1988) added terms to account
for the influence on limb darkening of photospheric temperature and
gravity variations. More recently, Heynderickx et al. (1994) have
demonstrated that the same formula can be derived from within a
Lagrangian (rather than Eulerian) framework for describing stellar-
surface perturbations.

Regrettably, Dziembowski’s (1977) formula suffers from one no-
table deficiency: it is applicable only to non-rotating stars. This is
less of a problem for stars that are pulsating in p (pressure) modes
(e.g. β Cephei and δ Scuti stars; see Gautschy & Saio 1996), the
time-scales characteristic of such modes being too short for them
to be affected significantly by rotation. However, for those systems
for which the NRP is dominated by g (gravity) modes – in par-
ticular, the slowly pulsating B (SPB) stars (Waelkens & Rufener
1985; Waelkens 1991) and γ Doradus stars (Balona, Krisciunas &
Cousins 1994; Kaye et al. 1999) – the effects of the Coriolis force
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can be dramatic, and the assumption that rotation may be ignored
will certainly lead to erroneous results.

The present paper seeks to address this deficiency, by introducing
a new semi-analytical formula for the light variations of uniformly
rotating stars. The formula is built around the adoption of the so-
called ‘traditional approximation’, and is therefore applicable to
low-frequency g modes of slow-to-moderately rotating systems, in
which the influence of the Coriolis force may be significant, but
where that of the centrifugal force can safely be neglected. The pa-
per is laid out thus: the following section reviews the formula for
the light variations of a non-rotating star, with the purpose of intro-
ducing the basic concepts and nomenclature used throughout. After
a review of the traditional approximation in Section 3, the new for-
mula, applicable to rotating stars, is derived in Section 4. Following
a discussion of its implementation in Section 5, this formula is used
in Section 6 to examine the effect of rotation on the variability of
a model SPB star. Section 7 concludes the paper with a discussion
and summary of the principal findings.

2 T H E C A S E W I T H O U T ROTAT I O N

This section reviews the expressions pertinent to the light variations
of a non-rotating pulsating star. These expressions will be used ex-
tensively during the development, in Section 4, of formulae for the
light variations in the rotating case. The exposition has been specif-
ically tailored to highlight the similarities between non-rotating and
rotating cases, and the present section also serves to introduce the
formalism and nomenclature common to the two.

In a non-rotating star, the equations governing NRP are obtained
through a sequence of steps. First, the equations of hydrodynamics
and thermodynamics are subjected to small perturbations about the
equilibrium state of the star. After discarding terms of quadratic or
higher order in the perturbation amplitude, the resulting linearized
pulsation equations – which constitute an eigenproblem, with the
pulsation frequency σ as the eigenvalue – may be separated in all
spherical-polar coordinates. It transpires that the angular depen-
dence of eigenmodes is proportional to the spherical harmonics Y m

� ,
where � is the harmonic degree and m the azimuthal order.

A myriad differing formulations exist for the spherical harmonics;
throughout the present work, the definition

Y m
� (θ, φ) = (−1)m

√
2� + 1

4π

(l − m)!

(l + m)!
Pm

� (cos θ )eimφ (1)

due to Arfken (1970) is adopted, where Pm
� is an associated Legen-

dre function, and (θ , φ) are, respectively, the polar and azimuthal
coordinates. The normalization of this equation ensures that the
spherical harmonics are orthonormal over the surface of a sphere,
namely∫ 2π

0

∫ π

0

Y m
� (θ, φ)Y m′∗

�′ (θ, φ) sin θ dθ dφ = δ�,�′δm,m′ . (2)

It should be noted that these expressions are valid for negative m,
as well as positive, as long as it is understood that

P−m
� (cos θ ) = (−1)m (� − m)!

(� + m)!
Pm

� (cos θ ) (3)

for all |m| � �; the latter relation arises directly from Rodrigues’
formula for Pm

� (cos θ ) (Arfken 1970).
Under the condition that a single pulsation mode is excited in the

star, the Lagrangian perturbations (denoted throughout by the prefix
δ) to the stellar radius R, effective temperature T eff and effective

gravity geff can be expressed as

δR

R
(θ, φ; t) = Re

[
�RY m

� (θ, φ)eiσ t
]
, (4)

δTeff

Teff
(θ, φ; t) = Re

[
�T Y m

� (θ, φ)eiσ t
]

(5)

and

δgeff

geff
(θ, φ; t) = Re

[
�gY m

� (θ, φ)eiσ t
]
, (6)

respectively. Here, Re[· · ·] denotes the real part of a complex quan-
tity, while σ is the eigenfrequency introduced previously, and t the
temporal independent variable. The complex perturbation coeffi-
cients {�R , �T , �g} appearing in these equations determine the
amplitude and phase of the respective perturbations. Specifically, as∫ 2π

0

∫ π

0

[
δR

R
(θ, φ; t)

]2

sin θ dθ dφ = |�R |2
2

(7)

via the orthonormality relation (2), it follows that |�R | is equal to√
8π times the root-mean square (rms) amplitude of δR/R over all

solid angles, and likewise for |�T | and |�g|.
If it is assumed that the radial displacement of fluid elements is

constant throughout the photosphere, then – as argued by Cugier
& Daszyńska (2001) – the effective gravity perturbation coefficient
�g can be related to �R via

�g = −(2 + σ̄ 2)�R, (8)

where, with M the stellar mass and G the constant of gravitation,

σ̄ 2 ≡ σ 2 R3

G M
(9)

defines a dimensionless pulsation frequency σ̄ , which is typically
less than unity for g modes, and greater than unity for p modes.
In the expression for �g , the first term in parentheses comes from
the r−2 dependence of the equilibrium gravitational field, and the
second from the radial acceleration of fluid elements.

If the pulsation can be considered adiabatic, then �T may also be
related to �R , through the expression (e.g. Buta & Smith 1979)

�T = ∇ad

[
�(� + 1)

σ̄ 2
− 4 − σ̄ 2

]
�R, (10)

where ∇ad is the adiabatic temperature gradient within the photo-
sphere. In this latter expression, the terms within the brackets ac-
count for compression or rarefaction of the atmosphere, caused on
the one hand by changes in the stellar surface area spanned by fluid
elements (namely the first term and half of the second one), and
on the other hand by perturbations to the effective gravity (namely
the last term, and the other half of the second term). If the pulsation
cannot be considered adiabatic, however, calculation of �T requires
a solution of non-adiabatic pulsation equations; more will be said
regarding this issue in Section 4.

With these definitions, the time-dependent perturbation δFx to
the flux Fx in the photometric band denoted ‘x’, arising from the
excitation of an individual pulsation mode, is given by

δFx

Fx
(θo, φo; t) = Re

[{
�RRm

�;x (θo, φo)

+ �TT m
�;x (θo, φo) + �gGm

�;x (θo, φo)
}

eiσ t
]
, (11)

where (θ o , φo) are the angular coordinates of the observer, in the
spherical-polar reference frame of the star. This expression is based
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on Watson’s (1987, 1988) extension to Dziembowski’s (1977) for-
mula for the flux variations, but the nomenclature has been some-
what modified in order to facilitate the developments in Section 4.
The three ‘differential flux functions’ (DFFs),

Rm
�;x (θo, φo) ≡ (2 + �)(1 − �)

I0;x
I�;x Y m

� (θo, φo), (12)

T m
�;x (θo, φo) ≡ 1

I0;x

∂I�;x

∂ ln Teff
Y m

� (θo, φo) (13)

and

Gm
�;x (θo, φo) ≡ 1

I0;x

∂I�;x

∂ ln g
Y m

� (θo, φo), (14)

parametrize – as a function of the observer coordinates (θo , φo) – the
individual contributions toward the relative flux variations arising
from perturbations to the surface radius, temperature and gravity,
respectively. Each DFF depends on the intensity moment

I�;x =
∫ 1

0

µP�(µ)Ix (µ) dµ, (15)

characterizing the angular dependence of the photospheric radiation
field; here, Ix is the wavelength-integrated specific intensity of the
radiation within passband x, emergent from the equilibrium pho-
tosphere at cosinus µ to the local surface normal, while P� is the
Legendre polynomial of degree �. The normalizing coefficient

I0;x =
∫ 1

0

µIx (µ) dµ, (16)

is the value of I�;x for � = 0 and is proportional to the x-band flux
from the quiescent star.

Inspection of the formula (11) reveals that the flux variations
depend on the azimuthal order m, and the observer coordinates (θ o,
φo), only through the same spherical harmonic term Y m

� appearing
in each of the expressions (12)–(14) for the DFFs. Consequently, the
ratio between the variation amplitude in two separate passbands is
independent of both m and θ o. In fact, this ratio depends only on the
harmonic degree � and the relative amplitudes and phases of the three
perturbation coefficients {�R , �T , �g}. This fact underpins the
approach used in the amplitude-phase (Stamford & Watson 1981)
and multicolour-amplitudes (Heynderickx et al. 1994) techniques
for the determination of �.

3 T H E T R A D I T I O NA L A P P ROX I M AT I O N

The traditional approximation, the origins of which lie in the geo-
physical literature (see Eckart 1960), greatly reduces the difficulty
of treating NRP in uniformly rotating stars. It amounts to neglecting
the horizontal component of the rotation angular velocity vector Ω,
when evaluating the Coriolis-force terms in the pulsation equations.
As discussed by Lee & Saio (1997), such an approach is reasonable
in layers where the Brunt-Väisälä frequency N greatly exceeds both
the rotation angular frequency � ≡ |Ω| and the corotating-frame
pulsation frequency ω ≡ σ + m�. These conditions are usually
fulfilled for low-frequency g modes trapped in the radiative regions
of slowly to moderately rotating stars.

When combined with the adiabatic and Cowling (1941) approx-
imations, where perturbations to the specific entropy and gravita-
tional potential are ignored, and under the further assumption that
the centrifugal distortion of the equilibrium star is negligible, the
traditional approximation restores the separability of the rotating-
star pulsation equations into radial and angular parts. The solutions
of the latter depend on the ‘spin parameter’ ν ≡ 2�/ω; denoting

these angular eigenfunctions by Ỹ m
� , the Lagrangian perturbations

to R, T eff and geff (cf. equations 4–6) become

δR

R
(θ, φ; t ; ν) = Re

[
�RỸ m

� (θ, φ; ν)eiσ t
]
, (17)

δTeff

Teff
(θ, φ; t ; ν) = Re

[
�T Ỹ m

� (θ, φ; ν)eiσ t
]

(18)

and

δgeff

geff
(θ, φ; t ; ν) = Re

[
�gỸ m

� (θ, φ; ν)eiσ t
]
. (19)

The indices � and m are used here to denote the harmonic degree and
azimuthal order of the spherical harmonic Y m

� to which Ỹ m
� tends in

the limit ν → 0 of no rotation.
There currently exist two approaches to calculating the angular

eigenfunctions Ỹ m
� . In their seminal treatment, Lee & Saio (1987)

addressed the problem using a matrix-algebra formalism; more re-
cently, Bildsten, Ushomirsky & Cutler (1996) have advocated a pro-
cedure based around the direct numerical integration of Laplace’s
tidal equation. Lee & Saio (1997) themselves suggest that this di-
rect approach is superior to the matrix method, but it has long been
known in the field of geophysics that the two formalisms are en-
tirely equivalent (e.g. Longuet-Higgins 1968). Here, a useful anal-
ogy can be drawn to the complementarity of the wave-mechanical
(Schrödinger) and matrix-mechanical (Heisenberg) paradigms in
quantum theory.

It transpires that the matrix-based formalism is the more flexible
framework for the present purposes. Full details of the technique
have been given by Lee & Saio (1987, 1990); the underlying con-
cept is that the angular eigenfunctions Ỹ m

� are expanded as an infinite
series of spherical harmonics. For a given Ỹ m

� , the appropriate ex-
pansion combines only harmonics of the same azimuthal order m
and latitudinal parity about the equator (Zahn 1966). Therefore, the
eigenfunctions are written as

Ỹ m
�k

(θ, φ; ν) =
∞∑
j=1

B j,kY m
� j

(θ, φ) (20)

(e.g. Unno et al. 1989), where

� j =
{

|m| + 2( j − 1) even-parity modes,
|m| + 2( j − 1) + 1 odd-parity modes,

(21)

and likewise for �k . The expansion coefficients Bj,k are the com-
ponents of a matrix B, for which the column vectors constitute the
eigenvectors of the real symmetric coupling matrix W introduced
by Lee & Saio (1987). There is a separate coupling matrix for each
value of m, ν and the parity, although the matrix is invariant under
a simultaneous change in the sign of both m and ν. The latter prop-
erty means that it is possible to consider only cases where ν � 0,
leaving the sign of m to determine whether the mode is prograde
(negative) or retrograde (positive) in the corotating frame of refer-
ence. Note that W becomes diagonal in the limit of no rotation, with
components Wj,j = � j (� j + 1).

In combination with a diagonal matrix D, for which the compo-
nents λ j ≡ Dj,j are the eigenvalues of W, the eigenvector matrix B
may be defined as a solution of the canonical equation

WB = BD. (22)

However, this equation is insufficient to determine B fully, and two
supplementary constraints must be imposed. First, the column vec-
tors of B – that is, the eigenvectors of W – are scaled to have a
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length of unity. Since W is real and symmetric, this normalization
means that B will be orthogonal,

BTB = I, (23)

where the superscript T denotes the transpose and I is the identity
matrix. As a result, the angular eigenfunctions Ỹ m

� will exhibit the
same orthonormality property∫ 2π

0

∫ π

0

Ỹ m
� (θ, φ)Ỹ m′∗

�′ (θ, φ) sin θ dθ dφ = δ�,�′δm,m′ (24)

as the spherical harmonics (cf. equation 2).
Secondly, as ν is taken to zero,Bmust transform continuously into

the identity matrix I. This requires that the columns (eigenvectors)
that constitute B be arranged in a specific order, and furthermore
that the overall sign of each column be selected appropriately. The
constraint is introduced to ensure that Ỹ m

� → Y m
� and that λ → �(�

+ 1) in the limit ν → 0 of no rotation (see above). A procedure for
choosing the necessary ordering and sign of the eigenvectors will
be discussed in Section 5.

4 T H E C A S E W I T H ROTAT I O N

The expressions (17)–(19) for perturbations within the traditional
approximation are almost identical to the equivalent non-rotating
ones (4)–(6), but angular dependences are described by the Ỹ m

� func-
tions, rather than by the spherical harmonics Y m

� . It is for this reason
that Dziembowski’s (1977) formula, and the modified forms intro-
duced by Watson (1987, 1988), cannot be used to model the flux
variations of a rotating, pulsating star.

However, these formulae can be applied piecewise to the terms
appearing in the expansion (20) for the rotationally modified angular
eigenfunctions, as these terms have an angular dependence propor-
tional to spherical harmonics. By adding together the contributions
arising from each, the observed flux variations due to the mode with
angular dependence Ỹ m

�k
are readily found as

δFx

Fx
(θo, φo, t ; ν) = Re

∞∑
j=1

[
B j,k

{
�RRm

� j ;x (θo, φo)

+ �TT m
� j ;x (θo, φo) + �gGm

� j ;x (θo, φo)
}

eiσ t
]

,

(25)

where all symbols have their usual meanings. It is straightforward
to rewrite this equation as

δFx

Fx
(θo, φo, t ; ν) = Re

[{
�RR̃m

�;x (θo, φo; ν) + �T T̃ m
�;x (θo, φo; ν)

+ �gG̃m
�;x (θo, φo; ν)

}
eiσ t

]
, (26)

which is identical to the non-rotating result (11), except for the fact
that the three DFFs – Rm

�;x ,T m
�;x and Gm

�;x – have been replaced by
the rotationally modified equivalents

R̃m
�k ;x (θo, φo; ν) ≡

∞∑
j=1

B j,kRm
� j ;x (θo, φo), (27)

T̃ m
�k ;x (θo, φo; ν) ≡

∞∑
j=1

B j,kT m
� j ;x (θo, φo) (28)

and

G̃m
�k ;x (θo, φo; ν) ≡

∞∑
j=1

B j,kGm
� j ;x (θo, φo), (29)

respectively. Using equations (12)–(14), these may be expressed in
terms of more elementary functions as

R̃m
�k ;x (θo, φo; ν) ≡

∞∑
j=1

B j,k
(2 + � j )(1 − � j )

I0;x
I� j ;x Y m

� j
(θo, φo), (30)

T̃ m
�k ;x (θo, φo; ν) ≡

∞∑
j=1

B j,k
1

I0;x

∂I� j ;x

∂ ln Teff
Y m

� j
(θo, φo) (31)

and

G̃m
�k ;x (θo, φo; ν) ≡

∞∑
j=1

B j,k
1

I0;x

∂I� j ;x

∂ ln g
Y m

� j
(θo, φo). (32)

Since B approaches the identity matrix I in the limit of no rotation
(cf. Section 3), these three DFFs correctly reduce to Rm

�;x ,T m
�;x and

Gm
�;x , respectively, in the same limit.
Combined with the above three expressions, the new formula (26)

represents the final result, appropriate to modelling the light varia-
tions of low-frequency g modes in rotating stars. Since the adiabatic
approximation was employed during its derivation, it would appear
that the formula is limited to those ideal cases where the pulsation is
adiabatic. Problematically, such cases are very rarely realized in the
surface layers of pulsating stars: there, the time-scale for heat ex-
change between neighbouring fluid elements becomes shorter than
the pulsation period, and departures from adiabaticy are large.

To address this difficulty, an approach suggested by Savonije,
Papaloizou & Alberts (1995) can be adopted. As before, the tradi-
tional and Cowling (1941) approximations are applied to the pulsa-
tion equations for a rotating star. However, the restrictive adiabatic
approximation is replaced by a partial model for non-adiabatic pro-
cesses, centred around neglecting the divergence of the (Eulerian)
horizontal flux perturbation in the equation governing energy con-
servation (see, e.g., Unno et al. 1989, their equation 21.5). With-
out the terms arising from this divergence, the pulsation equations
remain separable in all coordinates, even when non-adiabaticy is
allowed for.

As Savonije et al. (1995) discuss, this ‘non-adiabatic radial-flux’
(NARF) stratagem can be expected to yield reasonable results when
the pulsation perturbations vary most rapidly in the radial direction.
To examine whether this condition is met in the present context,
consider the approximate dispersion relation for low-frequency g
modes in rotating stars (e.g. Unno et al. 1989),

ω2 ≈ N 2k2
⊥ + (2Ω · k)2

k2
, (33)

where k is the local wavevector associated with perturbations, with
magnitude k, and components kr and k⊥ in the radial and horizontal
directions, respectively. As a prerequisite for the adoption of the
traditional approximation, it was assumed (cf. Section 3) that both
ω and � are much smaller than the Brunt-Väisälä frequency N.
Applying the same assumptions to the above dispersion relation
leads to the result k⊥ � k, implying that kr � k⊥, and confirming that
perturbations will indeed vary most rapidly in the radial direction.

In going from the adiabatic approximation to the NARF approxi-
mation, the angular parts of the separated pulsation equations remain
unaltered. Therefore, the new formula (26) and accompanying ex-
pressions (30)–(32) for the DFFs require no modification. However,
the �T perturbation coefficient is no longer obtained via an adia-
batic relation (e.g. equation 10); instead, it must be calculated via
solution of the radial parts of the NARF pulsation equations. Un-
der the aegis of the traditional approximation, these equations for a
rotating star are identical to their non-rotating NARF counterparts,
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save for the fact that each �(� + 1) term is replaced by the eigenvalue
λ (cf. Section 3) for the mode in question.

5 I M P L E M E N TAT I O N

Neither the new formula (26) for the flux variations, nor the accom-
panying equations (30)–(32) for the DFFs, are mathematically eso-
teric. However, the numerical implementation of these expressions
is far from trivial, involving a number of subtle issues that require
careful treatment. The present section delves into these issues, both
to document how the calculations that follow in Section 6 were ac-
complished, and – on epistemic grounds – to serve as a reference
for future studies that might adopt the new formula.

When calculating the eigenvector matrix B, it is simpler to solve
the inverse eigenproblem

W−1B = BD−1 (34)

than to deal with equation (22) directly. The reasons for this are
twofold. First, expressions for the components of the inverse matrix
W−1 are available in closed form (Lee & Saio 1987; Townsend
1997b). Secondly, W−1 is both symmetric and tridiagonal; hence,
the efficient QL algorithm (e.g. Press et al. 1992) may be used to find
eigenvalues and eigenvectors. Since the off-diagonal components of
the matrix are all non-zero when ν �= 0, this algorithm is guaranteed
to converge (Parlett 1980).

Although both W−1 and B are formally infinite in size, numerical
calculations require that they be truncated at some finite dimension
N. This truncation is equivalent to terminating the spherical har-
monic expansion of Ỹ m

� (cf. equation 20) at some finite � j = �N , and
likewise for the summations in the definitions (30)–(32) of R̃m

�;x , T̃ m
�;x

and G̃m
�;x . The absence of the � j > �N spherical harmonics will in-

troduce spurious, high-frequency features in all of these functions;
however, choosing N suitably large allows the amplitude of these
features to be constrained below any required value. Throughout
the subsequent sections, a dimension N = 200 was adopted; larger
values led to negligible changes in the results, while at the same
time increasing the computational costs (here, it is noted that the
operation count of the QL algorithm scales with N 3).

The eigenvector matrix calculated by the QL algorithm is always
orthogonal, so the first constraint imposed on B (cf. Section 3) is
automatically satisfied. To fulfil the second constraint, that B trans-
forms smoothly into I as ν is taken to zero, the procedure outlined
by Townsend (1997a,b) can be used. First, the columns of B and
the diagonal components D−1

j,j ≡ λ j
−1 are together arranged so

that the latter fall in descending order along the diagonal. Then, the
columns of both matrices are permuted cyclically �(ν ′) times to the
left, where �(ν ′) is the number of points between ν = ν ′ and ν = 0
at which the components of W−1 are singular. The locations of these
points can readily be found from consideration of the expressions
for the components (Lee & Saio 1987; Townsend 1997b).

The final step in the procedure is to select the overall sign of each
column of the permuted B matrix. This is done by requiring that, at
the stellar equator (θ = 90◦), the angular eigenfunctions satisfy

sgn
[
Ỹ m

� (θ, φ; ν)
] = sgn

[
Y m

� (θ, φ)
]

(35)

for even-parity modes and

sgn

[
∂

∂θ
Ỹ m

� (θ, φ; ν)

]
= sgn

[
∂

∂θ
Y m

� (θ, φ)

]
(36)

for odd-parity modes, where sgn [a] ≡ a/|a| is the sign function.
After this last step, it is guaranteed that B → I in the limit ν → 0.

Regarding the evaluation of the integral appearing in the defi-
nition (15) of the intensity moments I�;x , it should be remarked
that the use of numerical quadrature, although certainly the most
straightforward approach, can be problematical. The integrand in-
volves the Legendre polynomials P� which, toward larger values of
�, oscillate rapidly between positive and negative values over the
integration interval 0 � µ � 1. Unless this interval is subdivided ex-
tremely finely during the quadrature, numerical noise arising from
discretization errors will totally swamp the true value of the integral.
This difficulty can be addressed by fitting the photospheric intensity
data Ix with an analytical limb-darkening law (assuming, of course,
that this has not already been done).

The limb-darkening law adopted herein is that proposed by Claret
(2000), which models the angular dependence of Ix as

Ix (µ) = Ix (1)

[
1 −

4∑
r=1

ar ;x

(
1 − µr/2

)]
, (37)

where the coefficients ar ;x are determined from a generalized least-
squares fit to the intensity data (e.g. Press et al. 1992). This law
reproduces accurately the behaviour of stellar photospheres across
the whole Hertzprung–Russell diagram (Claret 2000); it is a superset
of the older linear, quadratic (Wade & Rucinski 1985) and square-
root (Diaz-Cordoves & Giménez 1992) limb-darkening laws, all of
which can be recovered by setting one or more ar ;x values to zero.

Substituting the above expression into equation (15), the intensity
moments are written as

I�;x = Ix (1)

∫ 1

0

P�(µ)µ

[
1 −

4∑
r=1

ar ;x

(
1 − µr/2

)]
dµ. (38)

This may be expressed in the more compact form

I�;x = Ix (1)
4∑

r=0

âr ;x I�,1+r/2, (39)

where

âr ;x =
{

1 − a1;x − a2;x − a3;x − a4;x (r = 0),
ar ;x (r = 1, . . . , 4),

(40)

and, following Dziembowski (1977),

I�,s =
∫ 1

0

P�(µ)µsdµ. (41)

The utility of adopting a limb-darkening law becomes apparent once
it is appreciated that the integrals I �,s may be evaluated analytically.
Abrabowitz & Stegun (1964, their equations 22.13.8 and 22.13.9)
give expressions for these integrals in terms of Gamma functions,
which can readily be converted into the recurrence relation

I�+2,s = s − �

s + � + 3
I�,s, (42)

with

I0,s = 1

1 + s
(s > −1), (43)

I1,s = 1

2 + s
(s > −2). (44)

This relation is particular useful in the context of the present
work, as it permits efficient calculation of an ascending sequence
I�;x ,I�+2;x ,I�+4;x , . . . of intensity moments.
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Table 1. The effective temperature T eff, logarithmic surface
gravity log g, mass M, radius R and metallicity Z of the SPB
stellar model considered throughout.

Teff log g M R Z

15 300 K 4.07 dex 4.70 M � 3.31 R � 0.02

6 C A L C U L AT I O N S

In this section, the new formula (26) is used to examine the effect
of rotation on the light variations of a pulsating star. The calcu-
lations are intended not as an exhaustive exploration of parameter
space, but to highlight some of the qualitative phenomena arising
due to rotation. The focus is placed throughout on a stellar model
constructed using the Warsaw–New Jersey stellar evolution code
(see, e.g., Dziembowski & Pamiatnykh 1993); the fundamental pa-
rameters of this model, given in Table 1, are intended to be broadly
representative of the archetypal SPB star 53 Per (see, e.g. De Ridder
et al. 1999).

6.1 Angular functions

As a preliminary step in the investigation, it is useful briefly to ex-
amine the influence of rotation on the angular eigenfunctions Ỹ m

� .
Accordingly, Fig. 1 shows the θ dependence of the � = 2 eigenfunc-
tions, for all permissible values m = −2, . . . , 2 of the azimuthal
order, and at three selected values ν = 0, 2, 5 of the spin parameter.

The figure demonstrates that the effect of increasing ν is to con-
centrate the eigenfunctions toward the stellar equator. This phe-
nomenon, first noted in the context of stellar pulsation by Lee &
Saio (1990), is already familiar in the study of gravity waves within
the Earth’s atmosphere and ocean (see, e.g. Gill 1982). It occurs
because the Coriolis force creates a waveguide centred around the
equator, in which pulsation can become trapped. All modes shown
in Fig. 1 are subject to confinement within this equatorial waveg-
uide; the retrograde (m > 0) modes appear more affected than the
prograde (m < 0) modes, because the angular eigenfunctions of the
former acquire an extra pair of latitudinal nodes when ν exceeds
unity (Lee & Saio 1990), which have to be fitted within the waveg-
uide. This extra pair means that, apart from a difference in overall

Figure 1. The polar dependence of the rotationally modified angular functions for � = 2, m = −2, . . . , 2 modes, plotted at azimuth φ = 0 and for three
alternative values of the spin parameter ν. The differing line styles are used to indicate the azimuthal order m of each mode.

sign, the polar dependence of the m = 2 mode approaches that of
the m = 0 mode as ν increases, as can clearly be seen in the figure.

In the limit of large ν, the boundaries of the equatorial waveguide
are situated at cos θ = ±ν−1 (Bildsten et al. 1996) for all but the
prograde sectoral (m = −2) mode. The latter is unique, in that it
remains nodeless in the polar direction at all values of ν; it cor-
responds to an equatorial Kelvin wave, the angular dependence of
which can be approximated by

Ỹ m
� (θ, φ; ν) ∝ emν cos2 θ+imφ (45)

(see Townsend 2003). Clearly, the latitudinal extent of this mode
varies as ν−1/2; thus, the degree of equatorial confinement experi-
enced by it will typically be much less than exhibited by others. As
will be demonstrated in the following sections, this result has impor-
tant consequences for the flux variations produced by this mode.

6.2 Differential flux functions

As discussed previously, the differential flux functions (cf. equa-
tions 30–32) parametrize the angular dependence of the relative
flux variations arising from radius, temperature and gravity pertur-
bations. To demonstrate the general characteristics of these func-
tions, Fig. 2 shows the θ o (observer colatitude) dependence of the
Johnson V-band DFFs appropriate to the model described in Ta-
ble 1, for the same set of parameters considered in the preceding
section. In constructing these functions, the V-band integrated spe-
cific intensity IV was calculated by interpolating the intensity in a
grid of local-thermodynamic equilibrium (LTE) spectra published
by Kurucz (1993), and then convolving these data with both the ap-
propriate Johnson-system filter/detector response function given by
Bessell (1990), and the transmission functions for two aluminium
mirrors and one airmass given by Allen (1973).

The focus is placed first on the T̃ m
�;V (temperature) and G̃m

�;V (grav-
ity) DFFs. With the introduction of rotation, the overall amplitude
of these functions is reduced: as pulsation becomes progressively
confined within an equatorial waveguide, less and less of the visible
stellar surface is undergoing temperature and gravity perturbations
of an amplitude high enough to contribute appreciably toward the
respective DFFs. The reduction tends to be rather more pronounced
when seen from near the stellar poles (θ o ≈ 0◦ or θo ≈ 180◦), as the
contributions from equatorial regions (where the pulsation ampli-
tude remains appreciable) are being viewed edge-on. Generally, the
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Figure 2. The θo dependence of the V-band DFFs for � = 2, m = −2, . . . , 2 modes of the SPB model (Table 1), plotted at azimuth φ = 0 and for three
alternative values of the spin parameter ν. The differing line styles are used to indicate the azimuthal order m of each mode.

DFFs of the prograde sectoral (m = −2) mode are affected least by
the rotation, as this mode is not as strongly confined as the others
(cf. Section 6.1).

The situation is somewhat more complicated in the case of the
R̃m

�;V (radius) DFFs. When the star is viewed from near the equa-
torial plane (θ o ≈ 90◦), the effect of increasing ν is to reduce the
amplitude of R̃m

�;V , for the same reasons as given above for the T̃ m
�;V

and G̃m
�;V functions. However, as can be seen from Fig. 2, exactly

the converse occurs near the polar regions of the star: toward larger
values of the spin parameter, the amplitude of R̃m

�;V becomes en-

hanced relative to the non-rotating case. The enhancement arises
because, when viewed from high latitudes, the equatorially trapped
radius perturbations nearly encircle the stellar limb and produce
significant modulations in the sky-projected area of the star. Since
similar enhancement does not occur to the T̃ m

�;V and G̃m
�;V functions,

the flux variations of an almost pole-on pulsator will become domi-
nated at large ν by contributions from the radius perturbations alone.
However, it should be stressed that this effect does not arise for the
non-axisymmetric (m �= 0) modes, when the star is precisely pole-
on: then, the flux variations vanish completely, the same as in the
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case without rotation. As before, the m = −2 mode is the excep-
tional case; the lesser confinement of this mode produces little polar
enhancement in its R̃m

�;V DFF, as the figure shows.
It is worth calling attention to the fact that the typical amplitude

of G̃m
�;V is approximately five orders of magnitude smaller than those

of R̃m
�;V and T̃ m

�;V . This is because, for the stellar parameters given
in Table 1, the flux is relatively insensitive to changes in the ion-
ization balance, the latter being governed by the effective gravity.
Accordingly, for B-type stars, it is often safe to neglect completely
the contribution toward flux variations arising from the G̃m

�;V term in
equation (26).

6.3 Light variations

The new formula (26) indicates that the light variations of a pulsating
star can be calculated by summing its three differential flux func-
tions, weighted by the corresponding perturbation coefficients {�R ,
�T , �g}. Within the linear theory, the overall scaling of these coeffi-
cients is arbitrary; however, their relative amplitudes and phases are
well defined: for a given �R , �g may be calculated via equation (8)
and �T can be found through solution of the pulsation equations
under the combined auspices of the traditional, Cowling (1941) and
NARF approximations (cf. Section 4).

In the context of the stellar model introduced in Table 1, solution
of the approximate equations was accomplished using a modified
form of the NARK pulsation code (Townsend 2002). As a result of
the appearance of the eigenvalue λ in these equations, the solutions
exhibit an implicit dependence on the rotation angular frequency �

and azimuthal order m. However, it was decided during the NARK

calculations to suppress these dependences by setting ν = 0, on the
grounds that it is the influence of rotation on the DFFs, rather than
on the perturbation coefficients, which is of principal interest in the
present paper.

Of the solutions found to the approximated pulsation equations,
one was singled out for particular scrutiny, as the lowest-frequency
� = 2 mode unstable due to the iron-group κ mechanism (see, e.g.
Dziembowski, Moskalik & Pamyatnykh 1993). This mode, iden-
tified within the canonical classification scheme as g28, has a pe-
riod of 1.40 d, corresponding to a dimensionless pulsation fre-
quency σ̄ = 0.229; Table 2 lists the amplitudes and phases of
its three perturbation coefficients. By combining these coefficients
with the DFFs presented previously (cf. Fig. 2), the new formula
(26) was used to calculate the semi-amplitude AV of the V-band
variations generated by the l = 2 g28 modes of azimuthal orders
m = −2, . . . , 2.

Fig. 3 presents these data, plotted as a function of θo at the three
values of ν considered previously. Also shown in the figure are
the corresponding AV data in situations where solely the radius
perturbations or temperature perturbations of the g28 modes were
allowed to contribute toward the variability. The inclusion of these
‘R-only’ and ‘T-only’ cases aims to furnish an indication of what
proportion of the variability of the modes arises from radius and
temperature perturbations. As discussed in the preceding section,

Table 2. The amplitudes and phases of the {�R , �T , �g}
perturbation coefficients for the g28 mode of the model star
introduced in Table 1.

�R �T �g

Amplitude 8.26 × 10−3 1.04 × 10−1 1.70 × 10−2

Phase 0.◦0 −21.◦3 −180.◦0

gravity perturbations make a negligible contribution toward the flux
changes; thus, a putative ‘g-only’ case was not considered. Note
that, on account of the ∼21◦ phase difference between radius and
temperature perturbations of the g28 modes (cf. Table 2), their AV

data cannot be calculated simply by summing (or differencing) the
AV data of the R-only and T-only cases.

Focusing first on the non-rotating (ν = 0) panels, it is clear from
a comparison of the R-only and T-only cases that the variability
of the g28 modes is mostly due to temperature perturbations. This
follows from the fact that, as attested by the coefficients in Table 2,
the temperature perturbations of the modes are over an order of
magnitude stronger than the corresponding radius perturbations –
a property characteristic of all low-frequency modes, for which the
predominantly horizontal fluid motions produce significant com-
pressive heating and expansive cooling of the stellar surface, but
little change in the surface’s radius.

Moving now to the ν = 2 and 5 panels, it is evident that the
principal effect of rotation is to suppress the variability generated
by the g28 modes. This reflects the decline in the amplitude of the
DFFs contributing toward AV , due to the equatorial confinement
of pulsation (cf. Section 6.2). Near the poles, the suppression of
variability is somewhat ameliorated by the fact that that there the
R̃m

�;V DFF is enhanced by the rotation. In fact, from comparing the
R-only and T-only cases in the ν = 5 panels, it can be seen that
the polar-viewed variability of the g28 modes arises predominantly
from radius perturbations, even though these perturbations are much
weaker than the corresponding temperature perturbations.

As in the preceding sections, the exception to the behaviour de-
scribed is the prograde sectoral (m = −2) mode. The variability
produced by this mode is far less affected by rotation than the oth-
ers, due once again to its reduced equatorial confinement. Since no
polar enhancement arises in the R̃m

�;V DFF of the mode, its light
variations are always dominated by temperature perturbations, with
only a small component coming from radius perturbations (compare
the m = −2 data of the R-only and T-only cases).

To illustrate further the effects of rotation, Fig. 4 plots the rms
angle-average of the semi-amplitude,

〈AV 〉 =
[

(4π)−1

∫ 2π

0

∫ π

0

A2
V sin θo dθo dφo

]1/2

(46)

as a function of spin parameter, for the same g28 modes considered
previously, and with the same inclusion of the R-only and T-only
cases. This quantity, a function of ν alone, characterizes the mean
level of variability exhibited by a large sample of stars which, al-
though otherwise identical, possess randomly oriented rotation axes.

The 〈AV 〉 data plotted in Fig. 4 highlight quite dramatically
the rotation-promoted suppression of the photometric variability of
the star. For ν � 1, the rms semi-amplitude of all but the usual
prograde sectoral mode declines rapidly with increasing spin pa-
rameter. The rate of decline depends on the azimuthal order, being
most rapid for the m = 1 mode. However, below the ν ≈ 1 cut-off
– the point at which the equatorial waveguide forms (see Townsend
2003) – the rms semi-amplitude of all modes is approximately (or
completely, in the limit ν → 0) independent of m.

From inspection of the R-only panel, it can be seen that the polar
enhancement of the R̃m

�;V DFF is insufficient to reverse the decline
in 〈AV 〉. This is because the polar regions account for only a small
fraction of the total solid angle subtended by the star, and therefore
cannot counteract the reduction in variability occurring at the mid-
and equatorial latitudes. However, a comparison with the T-only
panel reveals that the polar enhancement of R̃m

�;V does have the
effect of slowing the rate of decline in 〈AV 〉.
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Figure 3. The θo dependence of the V-band flux semi-amplitude (in millimagnitudes) for the � = 2, m = −2, . . . , 2 g28 modes of the SPB model (Table 1),
plotted at three alternative values of the spin parameter ν; also shown are the R-only and T-only cases discussed in the text. The differing line styles are used
to indicate the azimuthal order m of each mode.

The above findings are interesting, in light of the recent photo-
metric surveys of open clusters by Balona (1994), Balona & Koen
(1994, 1995) and Balona & Laney (1996). These authors failed to
find much evidence for low-frequency NRP, but did note that the
stars observed appeared to be, systematically, rapid rotators (V sin
i � 100 km s−1); this led them to infer that rapid rotation may ac-
tively suppress the excitation of g modes. However, the behaviour
exhibited in Fig. 4 suggests an alternative hypothesis: that g modes
are excited, but that equatorial confinement by the Coriolis force

may push their photometric signatures below typical observational
detection thresholds.

The recent stability calculations of Lee (2001) partly support this
hypothesis, by finding significant numbers of unstable g modes for
a M = 4 M � stellar model, even in the inertial (ν > 1) regime.
However, for the hypothesis to remain standing, two further con-
ditions must be met. First, that the dominant-amplitude unstable
modes are not prograde sectoral, because the latter would probably
remain detectable even in the limit of rapid rotation. Secondly, that
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Figure 4. The rms angle-averaged semi-amplitude (in millimagnitudes) of the V-band light variations for the � = 2, m = −2, . . . , 2 g28 modes of the SPB
model (Table 1), plotted as a function of the spin parameter ν; also shown are the R-only and T-only cases discussed in the text. The differing line styles are
used to indicate the azimuthal order m of each mode.

the frequencies of these dominant modes are sufficiently low to yield
corresponding spin-parameter values in excess of unity; here, it is
noted that the condition ν > 1, applied to the g28 mode considered
above, corresponds to the requirement that � > 0.21 �crit, where
�crit is the critical rotation angular frequency at which centrifugally
assisted equatorial mass loss will commence.

Whether or not these two conditions are met is difficult to es-
tablish. Currently, there exists no theory capable of predicting the
steady-state saturation amplitude of those NRP modes known, from
linear analyses, to be unstable. Therefore, determining which modes
are dominant is not as yet possible. Nevertheless, the hypothesis ad-
vanced above remains a viable explanation for the apparent paucity
of low-frequency NRP in the clusters studied by Balona (1994) and
others.

6.4 Colour variations

Toward the end of securing NRP mode identifications, photometric
observations come into their own when the variability in differing
passbands is compared. For the reasons discussed in Section 2, the
ratio

A[x,x ′] ≡ Ax

Ax ′
(47)

between the semi-amplitudes of the flux variations in two differing
passbands, here denoted by x and x ′, will be dependent solely on
the harmonic degree � and the relative amplitudes and phases of the
perturbation coefficients {�R , �T , �g}. Therefore, measurement of
such ratios, characterizing the fluctuations in the colour of a star, can
be used to ascertain the harmonic degree of the mode(s) responsible
for observed variability (see, e.g., Heynderickx et al. 1994; De Cat
2001).

Unfortunately, the foregoing discussion applies only to non-
rotating stars. This is demonstrated in Fig. 5, where A[V,U ] – the
ratio between the Johnson V- and U-band semi-amplitudes – is
plotted as a function of ν, for the modes considered in the preceding
sections, and at three alternative values of θ o. The semi-amplitude
data for the U band were calculated in an identical manner to the V-
band data (cf. Section 6.3), save for the fact that the Bessell (1990)
filter/detector response function appropriate to the U band was used
to obtain the integrated specific intensity.

The figure indicates quite clearly that rotation causes the am-
plitude ratio to acquire a dependence on both m and θo. For non-
zero ν, the DFFs associated with a given passband do not share the
same angular (i.e. θ o and m) dependence as their counterparts in
another passband; accordingly, when equation (47) is used to calcu-
late A[V,U ], this dependence will not cancel between the numerator
and the denominator. An inevitable consequence of this result is
that photometric amplitude ratios cannot easily be used as a diag-
nostic for the harmonic degree of a mode; indeed, the extremely
complicated behaviour of the A[V,U ] data plotted in Fig. 5 raises the
question of whether these ratios can offer any useful information
concerning the NRP of a rotating star.

In fact, the data in the figure do indicate one important heuristic:
that, in the limit of rapid rotation and/or low pulsation frequency, the
amplitude ratio is approximately independent of propagation direc-
tion (as determined by the sign of m). This is most evident in the sin
θ o = 0.9 panels of the figure: with increasing ν, the m = ±1 curves
approach one another quite closely. The m = ±2 curves exhibit
similar behaviour, albeit to a lesser extent. The reasons underlying
such behaviour are difficult to fathom; as Fig. 1 shows, the polar
dependence of the same |m| modes is different for prograde and ret-
rograde propagation directions. One therefore would not anticipate
that their amplitude ratios coincide in the limit of large ν.

7 D I S C U S S I O N A N D S U M M A RY

In the preceding sections, a new semi-analytical formula was pre-
sented for the flux variations originating from low-frequency g
modes in uniformly rotating stars. Although the formula (equa-
tions 26 and 30–32) was developed under the auspices of the adi-
abatic approximation, it was argued that it can also be applied to
non-adiabatic pulsation, as for low-frequency modes perturbations
will vary most rapidly in the radial direction, and the NARF approx-
imation (cf. Section 4) may therefore be employed.

Of the findings of the present work, the most significant is that,
for all modes apart from prograde sectoral, the confinement of pul-
sation within an equatorial waveguide suppresses the photometric
variability exhibited by a star. In the limit of rapid rotation and/or
small pulsation frequency, the variability will remain at detectable
levels only when viewed from very near the stellar poles. This
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Figure 5. The ratio A[V,U ] between the V- and U-band semi-amplitudes, for the � = 2, m = −2. . .2 g28 modes of the SPB model (Table 1), plotted as a
function of the spin parameter ν at three alternative values of θo; also shown are the R-only and T-only cases discussed in Section 6.3. The differing line styles
are used to indicate the azimuthal order m of each mode.

may explain why Balona (1994), and subsequent authors, found
so few long-period modes in their surveys of rapidly rotating cluster
members.

A secondary finding is that rotation completely disrupts the inde-
pendence, from the azimuthal order and observer colatitude, of the
amplitude ratio between variability in differing passbands. This re-
sult, anticipated by a number of authors (e.g. Balona & Dziembowski
1999), means that it will be very difficult to ascertain, from multi-
colour photometry alone, the identity of modes excited in a given

rotating star. Likewise, as Daszyńska-Daszkiewicz et al. (2002) have
pointed out in a recent paper, great care must be used when apply-
ing standard (i.e. non-rotating) mode-identification procedures to
rotating stars, lest these procedures lead to incorrect parameters.

The Daszyńska-Daszkiewicz et al. (2002) study sought to address
issues similar to those discussed in the present work, and a compari-
son between the two is therefore appropriate. These authors consid-
ered the influence on photometric variability of rotation-induced
coupling phenomena, whereby modes of the same azimuthal
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order, but differing harmonic degree, interact with one another via
the action of both Coriolis and centrifugal forces. Such interac-
tions occur only when the modes are undergoing an avoided cross-
ing, and thereby exhibit similar pulsation frequencies; by restricting
their analysis to couplings between a small number of modes (up
to three), the authors were able to incorporate a full treatment of
non-adiabatic processes in their calculations.

With regard to present work, the traditional approximation ne-
glects, a priori, the possibility of such mode couplings (see, e.g.
Lee & Saio 1989). However, it is this very neglect which permits
the separation of the pulsation equations, allowing investigations to
be extended into the inertial regime (ν > 1). This regime remains
inaccessible to the Daszyńska-Daszkiewicz et al. (2002) study, as a
large number of spherical harmonics (in the present work, 200) are
required to express accurately the angular dependence of a given
mode.

Accordingly, it can be concluded that the present study is com-
plementary to, rather than in competition with, that of Daszyńska-
Daszkiewicz et al. (2002); while the latter recommends itself
on its consideration of rotation-induced mode coupling, and on
its full incorporation of non-adiabatic effects, the former pro-
vides valuable insights into photometric variations in the inertial
rapid-rotation/low-frequency limit, with a restricted (NARF) non-
adiabatic treatment. Clearly, what is required of future investigations
is the unification of these strengths in a single NRP model, which
treats both non-adiabaticy and rotation without recourse to approx-
imations. From such a model can be devised the tools necessary to
secure mode identifications for those classes of variable star strongly
influenced by rotation, at last opening them up to asteroseismolog-
ical scrutiny.
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